帳號:guest(3.133.155.163)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王立宇
作者(外文):Wang, Li-Yu
論文名稱(中文):新型超低寫入電壓與高密度之金屬熔絲一次性寫入記憶體元件
論文名稱(外文):A Study of Ultra-Low Program Voltage and High-Density Metal-Fuse One-Time-Programmable Memory Cells
指導教授(中文):林崇榮
指導教授(外文):Lin, Chrong-Jung
口試委員(中文):池育德
金雅琴
口試委員(外文):Chih, Yue-Der
King, Ya-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:110063507
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:87
中文關鍵詞:低電壓高密度金屬熔絲一次性寫入記憶體元件
外文關鍵詞:Low-VoltageHigh-DensityMetal-FuseOne-Time-ProgrammableMemoryCell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
一次性寫入記憶體在生活中的各種電子產品與系統中具有十分廣泛的應用,從缺陷單元補救電路的位置儲存,類比電路的輸入輸出微調,到優化IC生產控制上,都可見其蹤影。一次性寫入記憶體相較於傳統的電荷儲存式快閃記憶體來說,在一次性記憶的功能上具有更好的資料保存可靠度。而隨著科技的不斷發展,一次性寫入記憶體的需求也將持續地增加,以滿足不斷增長的數據儲存需求。
傳統的1T1R一次性寫入記憶體元件,因較大的電晶體尺寸與高編程電壓,難以達到高密度的陣列,並且對於周邊電路也有著較高的要求。因此本篇論文提出一超低寫入電壓之1T2R金屬熔絲一次性寫入記憶體元件,相容於16奈米鰭式場效電晶體標準CMOS邏輯製程,利用改良的金屬熔絲結構與額外的電流分流徑,並透過縮小選擇電晶體的尺寸,來實現低電壓編程與高密度記憶體陣列。此元件除了能以1.2V的低電壓進行編程,還可用1.48μm^2的單元面積來實現高密度的陣列,並具有5000倍以上的讀取窗口,在高溫下也展現了優良的資料保存可靠度。
本篇論文另提出一相容於標準CMOS邏輯製程之高密度1T1R1D金屬熔絲一次性寫入記憶體元件,利用二極體取代原本1T2R元件的電流分流徑,如此一來便可有效解決其潛行電流的問題,不須做額外的陣列分區,達到比1T2R架構更高密度之記憶體陣列。
One-time-programmable (OTP) memory finds wide-ranging applications in various electronic devices and systems, including storage of repair information for redundancy circuits, analog circuit trimming, and storage of calibration parameters for optimizing production in IC foundry. OTP memory offers better reliability at one-time storage compared to traditional charge-trap flash memory. As technology continues to advance, the rising demand for OTP memory will continue, to meet the growing data storage needs.
The conventional 1T1R OTP memory has faced challenges in reducing its size to achieve high-density arrays due to larger transistor sizes and higher program voltages, which pose higher requirements for the peripheral circuits of the array. Therefore, this paper proposes a 1T2R Metal-Fuse OTP memory featuring ultra-low program voltage and is compatible with the standard 16 nm FinFET CMOS logic process. It accomplishes low-voltage programming at 1.2V and a high-density memory array of a 1.48μm^2 bit cell area through an improved metal fuse structure, an additional current divider, and the reduction of the select transistor size. It also exhibits a read window of over 5000 times and demonstrates good reliability under high temperatures.
This paper also proposed a high-density 1T1R1D Metal-Fuse OTP memory that is compatible with the standard CMOS logic process. It utilizes a diode to replace the current divider of the original 1T2R OTP, effectively addressing the issue of sneak currents. This eliminates the need for additional array partitioning and achieves a higher density memory array compared to the 1T2R architecture.
摘要...i
致謝...iii
章節目錄...v
附圖目錄...viii
附表目錄...xi
公式目錄...xii
第一章 緒論...1
1.1 前言...1
1.2 記憶體簡介...2
1.3 論文綱要...4
第二章 一次性寫入記憶體技術回顧與物理機制...5
2.1 一次性寫入記憶體應用與技術回顧...5
2.1.1 多晶矽熔絲記憶體元件(Poly-Fuse)...6
2.1.2 金屬熔絲記憶體元件(Metal-Fuse)...6
2.1.3 反熔絲記憶體元件(Anti-Fuse)...7
2.2 1T1R金屬熔絲一次性寫入記憶體元件...9
2.3 金屬熔絲寫入之物理機制與模型...10
2.3.1 電遷移(Electromigration)...10
2.3.2 焦耳加熱與熱遷移(Joule heating & Thermomigration)...11
2.3.3 應力遷移(Stress migration)...12
2.4 小結...13
第三章 超低寫入電壓之金屬熔絲記憶體元件...27
3.1 1T2R記憶體元件結構與陣列...27
3.1.1 單元結構與熔絲結構...27
3.1.2 陣列結構...28
3.2 記憶體元件操作原理...30
3.2.1 資料寫入(Program)...30
3.2.2 資料讀取(Read)...30
3.3 記憶體元件量測分析...31
3.3.1 量測儀器與環境參數之設定...31
3.3.2 基本特性量測...31
3.3.3 可靠度分析...32
3.4 小結...34
第四章 高密度之金屬熔絲記憶體元件...53
4.1 1T1R1D記憶體元件結構與陣列...53
4.1.1 單元結構...53
4.1.2 陣列結構...54
4.2 記憶體元件操作原理...56
4.2.1 資料寫入(Program)...56
4.2.2 資料讀取(Read)...56
4.3 記憶體元件量測分析...57
4.3.1 量測儀器與環境參數之設定...57
4.3.2 基本特性量測...57
4.4 小結...59
第五章 新型金屬熔絲記憶體之特性模擬與比較...68
5.1 1T2R記憶體陣列TCAD模擬...68
5.1.1 金屬熔絲電流密度與溫度模擬分析...69
5.1.2 記憶體陣列潛行電流模擬分析...69
5.2 1T2R與1T1R1D記憶體陣列之電性模擬...70
5.3 1T1R、1T2R與1T1R1D記憶體陣列比較...71
5.4 小結...72
第六章 總結...79
6.1 結語...79
6.2 未來展望...80
參考文獻...81
[1] S. Satoh et al., "A novel gate-offset NAND cell (GOC-NAND) technology suitable for high-density and low-voltage-operation flash memories," International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318), Washington, DC, USA, 1999, pp. 271-274.
[2] G. Campardo et al., "40-mm/sup 2/ 3-V-only 50-MHz 64-Mb 2-b/cell CHE NOR flash memory," in IEEE Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1655-1667, Nov. 2000.
[3] H. Pon, "Technology scaling impact on NOR and NAND flash memories and their applications," 2006 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings, Shanghai, China, 2006, pp. 697-700.
[4] R. Bez et al., "Phase Change Memory development trends," 2010 IEEE International Memory Workshop, Seoul, Korea (South), 2010, pp. 1-4.
[5] N. Takaura et al., "Understanding the switching mechanism of charge-injection GeTe/Sb2Te3 phase change memory through electrical measurement and analysis of 1R test structure," 2014 International Conference on Microelectronic Test Structures (ICMTS), Udine, Italy, 2014, pp. 32-37.
[6] H. . -S. P. Wong et al., "Metal–Oxide RRAM," in Proceedings of the IEEE, vol. 100, no. 6, pp. 1951-1970, June 2012.
[7] Hsin Wei Pan, Kai Ping Huang, Shih Yu Chen, Ping Chun Peng, Zhi Sung Yang, Cheng-Hsiung Kuo, Yue-Der Chih, Ya-Chin King and Chrong Jung Lin, ” 1Kbit FINFET Dielectric (FIND) RRAM in Pure 16nm FinFET CMOS Logic Process,” in 2015 IEEE International Electron Devices Meeting (IEDM), Washington, D.C., 7-9 Dec. 2015.
[8] Cheng-Jun Lin, Chrong-Jung Lin and Ya-Chin King, “3D Stackable Via RRAM Cells by Cu BEOL Process in FinFET CMOS Technologies,” in 2020 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, Aug. 2020.
[9] D. Kang and Y. -B. Kim, "Embedded STT-MRAM opportunities in new system hierarchies," 2015 International SoC Design Conference (ISOCC), Gyungju, 2015, pp. 61-62.
[10] S. Fujita, H. Noguchi, K. Ikegami, S. Takeda, K. Nomura and K. Abe, "Technology Trends and Near-Future Applications of Embedded STT-MRAM," 2015 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2015, pp. 1-5.
[11] Y. Kato et al., "Embedded FeRAM Challenges in the 65-nm Technology Node and Beyond," 2006 15th IEEE international symposium on the applications of ferroelectrics, Sunset Beach, NC, USA, 2006, pp. 81-84.
[12] D. Takashima, "Overview of FeRAMs: Trends and perspectives," 2011 11th Annual Non-Volatile Memory Technology Symposium Proceeding, Shanghai, China, 2011, pp. 1-6.
[13] C. Sandhya et al., "Effect of SiN on Performance and Reliability of Charge Trap Flash (CTF) Under Fowler–Nordheim Tunneling Program/Erase Operation," in IEEE Electron Device Letters, vol. 30, no. 2, pp. 171-173, Feb. 2009.
[14] J. Zhang, X. Tian, S. Yang, L. Li, M. Li and L. Gao, "Study of Intercell Trapped Charge for Data Retention Improvement in 3D NAND Flash Memory," 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 2020, pp. 1-4.
[15] Y. Fan, Z. Wang, S. Yang, K. Han and Y. He, "Investigation of Retention Characteristics in a Triple-level Charge Trap 3D NAND Flash Memory," 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 2022, pp. P31-1-P31-4.
[16] Byung-Jun Min et al., "An embedded nonvolatile FRAM with electrical fuse repair scheme and one time programming scheme for high performance smart cards," Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005., San Jose, CA, USA, 2005, pp. 255-258.
[17] X. Li, H. Zhong, Z. Tang and C. Jia, "Reliable Antifuse One-Time-Programmable Scheme With Charge Pump for Postpackage Repair of DRAM," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 9, pp. 1956-1960, Sept. 2015.
[18] Y. -H. Cheng and C. E. Kendrick, "Failure Analysis and Optimization of Metal Fuses for Post Package Trimming," 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual, Phoenix, AZ, USA, 2007, pp. 616-61.
[19] X. Deng, Y. Qiu, D. Toops and G. Jamison, "A Trim Bit One Time Programmable EPROM with Aggressively Reduced Area, Enhanced Functionality, and Extra Features," 2022 IEEE International Symposium on Circuits and Systems (ISCAS), Austin, TX, USA, 2022, pp. 1467-1471.
[20] M. Alavi et al., "A PROM element based on salicide agglomeration of poly fuses in a CMOS logic process," International Electron Devices Meeting. IEDM Technical Digest, Washington, DC, 1997, pp. 855-858.
[21] G. Cellere, A. Paccagnella, A. Visconti, M. Bonanomi, A. Candelori and S. Lora, "Effect of different total ionizing dose sources on charge loss from programmed floating gate cells," in IEEE Transactions on Nuclear Science, vol. 52, no. 6, pp. 2372-2377, Dec. 2005.
[22] H. -T. Lue, K. -Y. Hsieh, R. Liu and C. -Y. Lu, "Reliability issues of using barrier-engineered (BE) tunneling dielectric for floating gate flash memories," 2009 10th Annual Non-Volatile Memory Technology Symposium (NVMTS), Portland, OR, USA, 2009, pp. 58-62.
[23] J. -H. Lee and S. -M. Joe, "Investigation of reliability issue in tunneling and inter-poly dielectrics in floating gate NAND flash memory cell strings," The 4th IEEE International NanoElectronics Conference, Taoyuan, Taiwan, 2011, pp. 1-2.
[24] S. H. Kulkarni, Z. Chen, J. He, L. Jiang, M. B. Pedersen and K. Zhang, "A 4kb Metal-Fuse OTP-ROM Macro Featuring a 2V Programmable 1.37μm2 1T1R Bit Cell in 32 nm High-k Metal-Gate CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 863-868.
[25] S. Chung, T. -W. Chung, P. -Y. Ker and F. -L. Hsueh, "A 1.25µm2 cell 32Kb electrical fuse memory in 32nm CMOS with 700mV Vddmin and parallel/serial interface," 2009 Symposium on VLSI Circuits, Kyoto, Japan, 2009, pp. 30-31.
[26] H. Satake and A. Toriumi, "Dielectric breakdown mechanism of thin-SiO2 studied by the post-breakdown resistance statistics," 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325), Kyoto, Japan, 1999, pp. 61-62.
[27] Chiu-Chih Chiang et al., "Leakage and breakdown mechanisms in Cu damascene with a bilayer-structure α-SiCN/α-SiC dielectric barrier," Proceedings of the IEEE 2003 International Interconnect Technology Conference (Cat. No.03TH8695), Burlingame, CA, USA, 2003, pp. 201-203.
[28] K. Okada, M. Kamei and S. Ohno, "Reconsideration of Dielectric Breakdown Mechanism of Gate Dielectrics on Basis of Dominant Carrier Change Model," in IEEE Transactions on Electron Devices, vol. 64, no. 11, pp. 4386-4392, Nov. 2017.
[29] Jae-Kyung Wee et al., "An antifuse EPROM circuitry scheme for field-programmable repair in DRAM," in IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1408-1414, Oct. 2000.
[30] R. S. -J. Shen, M. -Y. Wu, H. -M. Chen and C. C. -H. Lu, "A high-density logic CMOS process compatible non-volatile memory for sub-28nm technologies," 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers, Honolulu, HI, USA, 2014, pp. 1-2.
[31] Z. Chen, S. H. Kulkarni, V. E. Dorgan, U. Bhattacharya and K. Zhang, "A 0.9um2 1T1R bit cell in 14nm SoC process for metal-fuse OTP array with hierarchical bitline, bit level redundancy, and power gating," 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), Honolulu, HI, USA, 2016, pp. 1-2.
[32] S. H. Kulkarni, Z. Chen, B. Srinivasan, B. Pedersen, U. Bhattacharya and K. Zhang, "Low-voltage metal-fuse technology featuring a 1.6V-programmable 1T1R bit cell with an integrated 1V charge pump in 22nm tri-gate process," 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, Japan, 2015, pp. C174-C175.
[33] Tu, King-Ning, et al., "Effect of current crowding on vacancy diffusion and void formation in electromigration." Applied Physics Letters 76.8, pp. 988-990, 2000.
[34] Zhang, Yan. "Electromigration phenomena in 0.13 micron copper interconnects," PhD Thesis, 2005.
[35] Lienig, Jens, and Matthias Thiele. Fundamentals of electromigration-aware integrated circuit design. Berlin: Springer, 2018.
[36] K. -S. Wu et al., "Investigation of electrical programmable metal fuse in 28nm and beyond CMOS technology," 2011 IEEE International Interconnect Technology Conference, Dresden, Germany, 2011, pp. 1-3.
[37] J. Li, L. Sun and W. Fan, "Electro-Migration Behavior Study on Metal Line Width and Length of AlCu Interconnects," 2021 China Semiconductor Technology International Conference (CSTIC), Shanghai, China, 2021, pp. 1-3.
[38] A. Heryanto et al., "Study of stress migration and electromigration interaction in copper/low-κ interconnects," 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2010, pp. 586-590.
[39] J. M. Passage, N. Azhari and J. R. Lloyd, "Stress migration followed by electromigration reliability testing," 2019 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2019, pp. 1-5.
[40] I-Hsin Yang, Li-Yu Yeh, Chrong Jung Lin and Ya-Chin King, “Current-Divider-Via Assisted Metal-Fuse OTP Memory in FinFET CMOS Technologies,” in 2022 International Conference on Solid State Devices and Materials (SSDM), Japan, Sept. 2022.
(此全文20280702後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *