帳號:guest(3.145.172.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張逸鳴
作者(外文):Zhang, Yi-Ming
論文名稱(中文):用於2.4GHz下射頻能量收集之射頻-直流電壓轉換電路
論文名稱(外文):A 2.4GHz RF-to-DC Converter design for RF Energy Harvesting
指導教授(中文):徐永珍
指導教授(外文):Hsu, Klaus Yung-Jane
口試委員(中文):劉怡君
裴靜偉
口試委員(外文):Liu, Yi-Chun
Pei, Zingway
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學號:110063466
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:68
中文關鍵詞:射頻能量收集射頻-直流電壓轉換電路2.4GHz
外文關鍵詞:RF Energy HarvestingRF-to-DC Converter2.4GHz
相關次數:
  • 推薦推薦:0
  • 點閱點閱:139
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著Henrich Hertz和Nikola Tesla證明環境中電磁波的存在,隨後Nikola Tesla提出了無線充電的概念,射頻能量收集逐漸進入大家的視野。
單位面積內太陽能、熱能、震動能量都大於射頻能量,這表明射頻能量的收集的難度相對較大。並且環境中的射頻能量有時會被隔絕,不能時刻提供穩定的射頻能量輸入,因此需要對收集來的能量進行儲存和管理,以供後續使用。儘管如此,由於其優勢,當今市面上已有許多低功耗電路使用射頻能量充當起能量來源,但是其射頻能量收集電路的靈敏度較低、效率不高,從而使用的條件相對苛刻。
因此,本文提出的高靈敏度、低功耗、高轉換效率的射頻能量收集電路。希望在保證轉換效率的前提下,降低RF Energy Harvesting電路所需成本,提高經濟效益,讓RF Energy Harvesting在之後能得到真正的普及。
晶片使用TSMC 0.18μm 1P6M CMOS的製程來製作,尺寸大小為338.964 μm x 255.36 μm。電路供應的射頻能量為 -20 dBm。負載為13kΩ的電阻、1nH的電感及1pF的電容,模擬後端Power IC的輸入。在輸入的的射頻能量為 -20 dBm條件下,輸出足夠能量供後端Power IC收集並使用。
With the demonstrations of electromagnetic waves in the environment by Heinrich Hertz and Nikola Tesla, followed by Nikola Tesla's concept of wireless charging, the idea of RF energy harvesting gradually entered the public consciousness.
Energy harvesting from radio frequency sources faces more significant challenges than solar, thermal, and vibrational power within a unit area. It indicates that collecting radio frequency power is relatively more complex. Additionally, radio frequency power in the environment is sometimes isolated and cannot consistently provide a stable radio frequency power input. Therefore, storing and managing the collected energy for subsequent use is necessary. Despite these challenges, low-power circuits utilizing radio frequency energy as their power source are readily available in today's market. However, their RF energy harvesting circuits often exhibit lower sensitivity and efficiency, making their conditions of use relatively demanding.
Therefore, this paper introduces an RF energy harvesting circuit with high sensitivity, low power consumption, and high conversion efficiency. The goal is to reduce the cost of RF Energy Harvesting circuits while maintaining conversion efficiency, ultimately enhancing economic viability, and promoting the widespread adoption of RF Energy Harvesting in the future.
The chip is manufactured using TSMC's 0.18μm 1P6M CMOS process and has dimensions of 338.964 μm x 255.36 μm. The circuit is designed to operate with an input radio frequency power of -20 dBm. It interfaces with a load consisting of a 13 kΩ resistor, 1 nH inductor, and 1 pF capacitor, simulating the input to the backend Power IC. Under the given conditions with an input radio frequency power of -20 dBm, the circuit can produce sufficient power for collection and use by the backend Power IC.
摘要-------------i
Abstract--------ii
致謝-------------iii
目錄-------------iv
圖目錄-----------vii
表目錄-----------x
第一章 緒論--------1
1.1研究背景--------1
1.1.1環境能量收集的發展背景--------1
1.1.2射頻能量收集的意義--------2
1.2研究動機--------3
1.3論文概述--------4
第二章 原理及相關文獻--------5
2.1射頻能量傳輸的分類--------5
2.2射頻能量傳輸的基本原理--------7
2.3射頻能量收集電路的基本原理--------8
2.3.1射頻源--------8
2.3.2天線--------12
2.3.3阻抗匹配--------13
2.3.3.1 L型阻抗匹配--------14
2.3.3.2 自適應阻抗匹配網路--------17
2.3.4 RF-DC整流升壓電路--------18
第三章 電路架構與系統規格--------26
3.1 電路架構簡介--------26
3.2 系統規格--------27
第四章 電路設計與佈局--------28
4.1 子電路設計--------28
4.1.1天線--------28
4.1.2 Matching Network--------28
4.1.3 整流升壓電路--------31
4.1.4 Power IC 及储能装置--------32
4.2 系統模擬結果--------33
4.2.1 Pre-sim--------33
4.2.2 Post-sim--------34
4.2.3 模擬結果與文獻比較--------38
4.3晶片佈局--------39
第五章 晶片量測結果--------40
5.1 PCB板設計--------40
5.2 量測儀器介紹--------42
5.3 量測步驟--------43
5.3.1 外接天線量測--------43
5.3.2 整流升壓電路量測--------44
5.3.3 Matching Network量測--------46
5.3.4 Matching Network + 整流升壓電路量測--------47
5.3.5 完整RF-CD整流升壓電路量測--------48
5.4 量測結果--------49
5.4.1 外接天線量測數據--------49
5.4.2 整流升壓電路量測數據--------50
5.4.3 Matching Network量測數據--------51
5.4.4 Matching Network + 整流升壓電路量測數據--------52
5.4.5 完整RF-CD整流升壓電路量測數據--------53
5.5 量測問題討論--------55
第六章 結論與後續研究建議--------65
6.1 結論--------65
6.2 後續研究建議--------65
參考文獻--------67

[1] J.A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” Pervasive Computing, IEEE CS and IEEE ComSoc, pp. 18-27,Jan.2005.
[2] J. Garnica, R. A. Chinga and J. Lin, "Wireless Power Transmission: From Far Field to Near Field," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1321-1331, June 2013, doi: 10.1109/JPROC.2013.2251411.
[3] "IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz," in IEEE Std C95.1-2019 (Revision of IEEE Std C95.1-2005/ Incorporates IEEE Std C95.1-2019/Cor 1-2019) , vol., no., pp.1-312, 4 Oct. 2019, doi: 10.1109/IEEESTD.2019.8859679.
[4] X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, "Wireless Networks With RF Energy Harvesting: A Contemporary Survey," in IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 757-789, Secondquarter 2015, doi: 10.1109/COMST.2014.2368999.
[5] M. Piñuela, P. D. Mitcheson and S. Lucyszyn, "Ambient RF Energy Harvesting in Urban and Semi-Urban Environments," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 7, pp. 2715-2726, July 2013, doi: 10.1109/TMTT.2013.2262687.
[6] Z. Liang and J. Yuan, "Modelling and Prediction of Mobile Service Channel Power Density for RF Energy Harvesting," in IEEE Wireless Communications Letters, vol. 9, no. 5, pp. 741-744, May 2020, doi: 10.1109/LWC.2020.2968880.
[7] S. Shen, Y. Zhang, C. -Y. Chiu and R. Murch, "An Ambient RF Energy Harvesting System Where the Number of Antenna Ports is Dependent on Frequency," in IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 9, pp. 3821-3832, Sept. 2019, doi: 10.1109/TMTT.2019.2906598.
[8] D. Lauder and Y. Sun, "Design Considerations of Antennas and Adaptive Impedance Matching Networks for RF Energy Harvesting," 2020 European Conference on Circuit Theory and Design (ECCTD), Sofia, Bulgaria, 2020, pp. 1-4, doi: 10.1109/ECCTD49232.2020.9218310.
[9] G. Papotto, F. Carrara and G. Palmisano, "A 90-nm CMOS Threshold-Compensated RF Energy Harvester," in IEEE Journal of Solid-State Circuits, vol. 46, no. 9, pp. 1985-1997, Sept. 2011, doi: 10.1109/JSSC.2011.2157010.
[10] Koji Kotani and Takashi Ito, "High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs," 2007 IEEE Asian Solid-State Circuits Conference, Jeju, Korea (South), 2007, pp. 119-122, doi: 10.1109/ASSCC.2007.4425746.
[11] K. Kotani and T. Ito, "High efficiency CMOS rectifier circuits for UHF RFIDs using Vth cancellation techniques," 2009 IEEE 8th International Conference on ASIC, Changsha, China, 2009, pp. 549-552, doi: 10.1109/ASICON.2009.5351344.
[12] S. dela Cruz, M. G. delos Reyes, A. Alvarez, M. T. de Leon and C. R. Roque, "Design and implementation of passive RF-DC converters for RF power harvesting systems," TENCON 2010 - 2010 IEEE Region 10 Conference, 2010, pp. 1503-1508, doi: 10.1109/TENCON.2010.5686138.
[13] Sanjeev K, M. Machnoor, K. J. Vinoy and T. V. Prabhakar, "A high efficiency 2.4GHz RF to DC converter using 130nm CMOS Cross-Coupled Rectifier," 2016 Twenty Second National Conference on Communication (NCC), Guwahati, India, 2016, pp. 1-4, doi: 10.1109/NCC.2016.7561175.
[14] M. H. Ouda, W. Khalil and K. N. Salama, "Self-Biased Differential Rectifier With Enhanced Dynamic Range for Wireless Powering," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 5, pp. 515-519, May 2017, doi: 10.1109/TCSII.2016.2591263.
[15] K. J. P. Jimenez, J. A. Hora, O. J. L. Gerasta, X. Zhu and E. Dutkiewicz, "Self-Biased 2.4 GHz CMOS RF-to-DC Converter with 80% Efficiency and −22.04 dBm Sensitivity for Wi-Fi Energy Harvesting," 2019 IEEE International Circuits and Systems Symposium (ICSyS), Kuantan, Malaysia, 2019, pp. 1-4, doi: 10.1109/ICSyS47076.2019.8982428.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *