|
Bibliography [1] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse convolutional neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 806–814. [2] A. Zhou, Y. Ma, J. Zhu, J. Liu, Z. Zhang, K. Yuan, W. Sun, and H. Li, “Learning n: m fine-grained structured sparse neural networks from scratch,” arXiv preprint arXiv:2102.04010, 2021. [3] H.-H. Liao, C.-L. Lee, J.-K. Lee, W.-C. Lai, M.-Y. Hung, and C.-W. Huang, “Support convolution of cnn with compression sparse matrix multiplication flow in tvm,” in 50th international conference on parallel processing workshop, 2021, pp. 1–7. [4] G.-M. Liang, C.-Y. Yuan, M.-S. Yuan, T.-L. Chen, K.-H. Chen, and J.-K. Lee, “The support of mlir hls adaptor for llvm ir,” in Workshop Proceedings of the 51st International Conference on Parallel Processing, 2022, pp. 1–8. [5] G.-M. Liang, C.-L. Lee, R. Lai, and J.-K. Lee, “Support of sparse tensor computing for mlir hls,” in Proceedings of the 52nd International Conference on Parallel Processing Workshops, 2023, pp. 88–95. 38 BIBLIOGRAPHY 39 [6] H.-I. C. Liu, M. Brehler, M. Ravishankar, N. Vasilache, B. Vanik, and S. Laurenzo, “Tinyiree: An ml execution environment for embedded systems from compilation to deployment,” IEEE Micro, vol. 42, no. 5, pp. 9–16, 2022. [7] T. Jin, G.-T. Bercea, T. D. Le, T. Chen, G. Su, H. Imai, Y. Negishi, A. Leu, K. O’Brien, K. Kawachiya et al., “Compiling onnx neural network models using mlir,” arXiv preprint arXiv:2008.08272, 2020. [8] H. Ye, C. Hao, J. Cheng, H. Jeong, J. Huang, S. Neuendorffer, and D. Chen, “Scalehls: A new scalable high-level synthesis framework on multi-level intermediate representation,” in 2022 IEEE international symposium on high-performance computer architecture (HPCA). IEEE, 2022, pp. 741–755. [9] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh, C. Yu, and P. Micikevicius, “Accelerating sparse deep neural networks,” arXiv preprint arXiv:2104.08378, 2021. [10] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu, and L. Zhang, “Efficient and effective sparse lstm on fpga with bankbalanced sparsity,” in Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2019, pp. 63–72. [11] Y. N. Wu, P.-A. Tsai, S. Muralidharan, A. Parashar, V. Sze, and J. Emer, “Highlight: Efficient and flexible dnn acceleration with hierarchical structured sparsity,” in Proceedings of the 56th Annual IEEE/ ACM International Symposium on Microarchitecture, 2023, pp. 1106– 1120. BIBLIOGRAPHY 40 [12] A. Bik, P. Koanantakool, T. Shpeisman, N. Vasilache, B. Zheng, and F. Kjolstad, “Compiler support for sparse tensor computations in mlir,” ACM Transactions on Architecture and Code Optimization (TACO), vol. 19, no. 4, pp. 1–25, 2022. [13] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532–1543. [14] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text classification,” arXiv preprint arXiv:1607.01759, 2016. [15] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013. [16] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona, D. Ramanan, P. Doll’a r, and C. L. Zitnick, “Microsoft COCO: common objects in context,” CoRR, vol. abs/ 1405.0312, 2014. [Online]. Available: http://arxiv.org/abs/1405.0312 [17] C.-L. Lee, C.-T. Chao, W.-H. Chu, M.-Y. Hung, and J.-K. Lee, “Accelerating ai applications with sparse matrix compression in halide,” Journal of Signal Processing Systems, vol. 95, no. 5, pp. 609–622, 2023. |