|
[1] R. Boney, A. Ilin, and J. Kannala, “Learning of feature points without additional supervision improves reinforcement learning from images,” arXiv preprint arXiv:2106.07995, 2021. [2] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor,” in International Conference on Machine Learning, pp. 1861–1870, PMLR, 2018. [3] D. Yarats, A. Zhang, I. Kostrikov, B. Amos, J. Pineau, and R. Fergus, “Improving sample efficiency in model-free reinforcement learning from images,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10674–10681, 2021. [4] M. Laskin, A. Srinivas, and P. Abbeel, “Curl: Contrastive unsupervised representations for reinforcement learning,” in International Conference on Machine Learning, pp. 5639–5650, PMLR, 2020. [5] I. Kostrikov, D. Yarats, and R. Fergus, “Image augmentation is all you need: Regularizing deep reinforcement learning from pixels,” arXiv preprint arXiv:2004.13649, 2020. [6] T. D. Kulkarni, A. Gupta, C. Ionescu, S. Borgeaud, M. Reynolds, A. Zisserman, and V. Mnih, “Unsupervised learning of object keypoints for perception and control,” Advances in Neural Information Processing Systems, vol. 32, 2019. [7] T. Anciukeviˇcius, P. Henderson, and H. Bilen, “Learning to predict keypoints and structure of articulated objects without supervision,” in 2022 26th International Conference on Pattern Recognition (ICPR), pp. 3383–3390, IEEE, 2022. [8] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv preprint arXiv:1511.08458, 2015. [9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013. [10] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,” arXiv preprint arXiv:1801.00690, 2018. [11] M. Laskin, K. Lee, A. Stooke, L. Pinto, P. Abbeel, and A. Srinivas, “Reinforcement learning with augmented data,” Advances in Neural Information Processing Systems, vol. 33, pp. 19884–19895, 2020. [12] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman, “Data-efficient reinforcement learning with self-predictive representations,” arXiv preprint arXiv:2007.05929, 2020. [13] M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand, L. Charlin, R. D. Hjelm, P. Bachman, and A. C. Courville, “Pretraining representations for data-efficient reinforcement learning,” Advances in Neural Information Processing Systems, vol. 34, pp. 12686–12699, 2021. 14] T. Jakab, A. Gupta, H. Bilen, and A. Vedaldi, “Unsupervised learning of object landmarks through conditional image generation,” Advances in Neural Information Processing Systems, vol. 31, 2018. [15] Y. Zhang, Y. Guo, Y. Jin, Y. Luo, Z. He, and H. Lee, “Unsupervised discovery of object landmarks as structural representations,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2694– 2703, 2018.
|