帳號:guest(18.119.213.213)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳衍能
作者(外文):Chen, Yen-Neng
論文名稱(中文):面對面三維積體電路設計的詳細放置
論文名稱(外文):Detailed Placement for Face-to-Face 3D-IC Design
指導教授(中文):麥偉基
指導教授(外文):Mak, Wai-Kei
口試委員(中文):王廷基
陳宏明
口試委員(外文):Wang, Ting-Chi
Chen, Hung-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:110062642
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:32
中文關鍵詞:實體設計自動化三維積體電路詳細放置
外文關鍵詞:electronic design automation3D-ICdetailed placement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
三維積體電路技術是半導體行業創新的核心,受到持續追求高性能和空間效率的推動。這項技術改變了芯片的設計和製造方式,實現了高度的功能整合,提升系統性能和多功能性。此外,它可以縮短信號傳播路徑,增加信號帶寬,同時降低功耗和成本。此外,它提供了更大的設計靈活性,有助於異構整合。在本篇論文中我們已經引入了一種針對面對面三維積體電路設計量身定制的詳細放置方法。主要目標是在考慮晶片間終端數量及其對線路長度的影響的情況下減少線路總長度。我們的方法包括三個主要步驟:單元重新分配、合法化和三維詳細放置。首先,我們優化具有晶片間連接的電路網,以最小化線長總和。其次,我們為晶片間終端設置位置,以使線長增量最小化,並為設計創建一個合法的放置解決方案。最後,在保持放置合法性的同時,我們將電路元件移動到具有較低線長的區域和晶片中。在實驗結果部分,我們也展示了本文提出的方法可以提高放置質量。
The 3D-IC (Three-Dimensional Integrated Circuit) technology is at the heart of innovations in the semiconductor industry, driven by an ongoing pursuit of high performance and spatial efficiency. This technology transforms how chips are designed and manufactured and facilitates a high degree of functional integration, enhancing system performance and versatility. Moreover, it can shorten signal propagation paths and increase bandwidth while reducing power consumption and costs. Additionally, it provides greater design flexibility, contributing to heterogeneous integration. This thesis proposes a detailed placement method for Face-to-Face (F2F) 3D-IC design. The primary objective is to reduce HPWL while considering the number of inter-die terminals and their impact on HPWL. Our approach includes three primary stages: cell reassignment, legalization, and 3D detailed placement. Firstly, we optimize nets with inter-die connections to minimize HPWL. Secondly, we set positions for the inter-die terminals with the least HPWL increment and create a legal placement solution for the design. Lastly, while maintaining the placement's legality, we move cells to regions and dies with a reduced HPWL. In the experimental results section, we have demonstrated that the method proposed in this thesis enhances the placement quality.
誌謝
摘要i
Abstract ii
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Preliminaries 5
2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Proposed Approach 7
3.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Cell Reassignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Terminal Legalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 Set Terminal Positions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Legalize Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Global Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 Vertical Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Experimental Results 23
4.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Conclusion 29
Bibliography 31
[1] K. Chang, S. Sinha, B. Cline, R. Southerland, M. Doherty, G. Yeric, and S. K. Lim, “Cascade2d: A design-aware partitioning approach to monolithic 3d ic with 2d commercial tools,” in 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8, 2016.
[2] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Shrunk-2-d: A physical design methodology to build commercial-quality monolithic 3-d ics,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 10, pp. 1716–1724, 2017.
[3] S. S. Kiran Pentapati, K. Chang, V. Gerousis, R. Sengupta, and S. K. Lim, “Pin-3d: A physical synthesis and post-layout optimization flow for heterogeneous monolithic 3d ics,” in 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–
9, 2020.
[4] J. Kim, G. Murali, P. Vanna-iampikul, E. Lee, D. Kim, A. Chaudhuri, S. Banerjee, K. Chakrabarty, S. Mukhopadhyay, and S. K. Lim, “Rtl-to-gds design tools for monolithic 3d ics,” in Proceedings of the 39th International Conference on Computer-Aided Design, ICCAD ’20, (New York, NY, USA), Association for Computing Machinery, 2020.
[5] B. W. Ku, K. Chang, and S. K. Lim, “Compact-2d: A physical design methodology to build two-tier gate-level 3-d ics,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 6, pp. 1151–1164, 2020.
[6] P. Vanna-Iampikul, C. Shao, Y.-C. Lu, S. Pentapati, and S. K. Lim, “Snap-3d: A constrained placement-driven physical design methodology for face-to-face-bonded 3d ics,” in Proceedings of the 2021 International Symposium on Physical Design, ISPD ’21, (New York, NY, USA), p. 39–46, Association for Computing Machinery, 2021.
[7] J. Cong and G. Luo, “A multilevel analytical placement for 3d ics,” in 2009 Asia and South Pacific Design Automation Conference, pp. 361–366, 2009.
[8] J. Lu, H. Zhuang, I. Kang, P. Chen, and C.-K. Cheng, “Eplace-3d: Electrostatics based placement for 3d-ics,” in Proceedings of the 2016 on International Symposium on Physical Design, ISPD ’16, (New York, NY, USA), p. 11–18, Association for Computing Machinery, 2016.
[9] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “Tsv-aware analytical placement for 3-d ic designs based on a novel weighted-average wirelength model,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 4, pp. 497–509, 2013.
[10] J. Cong, G. Luo, and Y. Shi, “Thermal-aware cell and through-silicon-via co-placement for 3d ics,” in 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 670–675, 2011.
[11] D. H. Kim, K. Athikulwongse, and S. K. Lim, “Study of through-silicon-via impact on the 3-d stacked ic layout,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 5, pp. 862–874, 2013.
[12] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed placement algorithm,” in Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, ICCAD ’05, (USA), p. 48–55, IEEE Computer Society, 2005.
[13] J. Cong and M. Xie, “A robust mixed-size legalization and detailed placement algorithm,” vol. 27, p. 1349–1362, aug 2008.
[14] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang, “Ntuplace3: An analytical placer for large-scale mixed-size designs with preplaced blocks and density constraints,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 7, pp. 1228–1240, 2008.
[15] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legalization of standard cell circuits with minimal movement,” in Proceedings of the 2008 International Symposium on Physical Design, ISPD ’08, (New York, NY, USA), p. 47–53, Association for Computing Machinery, 2008.
[16] K.-S. Hu, I.-J. Lin, Y.-H. Huang, H.-Y. Chi, Y.-H. Wu, and C.-F. C. Shen, “2022 iccad cad contest problem b: 3d placement with d2d vertical connections,” in 2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–5, 2022.
[17] I.-J. L. Y.-H. W. W.-H. C. Kai-Shun Hu, Hao-Yu Chi and Y.-T. Hsieh, “2023 iccad cad contest problem b: 3d placement with macros.,” 2023 ICCAD CAD Contest Problem B., 2023. To be published.
[18] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution quality and routability validation in global placement,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 9, pp. 1717–1730, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *