|
[1] Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. Deep learning approaches for data augmentation and classification of breast masses using ultrasound images. International Journal of Advanced Computer Science and Applications, 10, 01 2019. [2] Antonio Bugalho, Dalila Ferreira, Sara S Dias, Maren Schuhmann, Jose C Branco, Maria J Marques Gomes, and Ralf Eberhardt. The diagnostic value of transthoracic ultrasonographic features in predicting malignancy in undiagnosed pleural effusions: a prospective observational study. Respiration, 87(4):270–278, January 2014. [3] Heang-Ping Chan, Ravi K. Samala, Lubomir M. Hadjiiski, and Chuan Zhou. Deep Learning in Medical Image Analysis, pages 3–21. Springer International Publishing, Cham, 2020. [4] P. Chlap, H. Min, N. Vandenberg, J. Dowling, L. Holloway, and A. Haworth. A review of medical image data augmentation techniques for deep learning applications. J Med Imaging Radiat Oncol, 65(5):545–563, 2021. [5] Florian Dubost, Gerda Bortsova, Hieab Adams, M. Arfan Ikram, Wiro Niessen, Meike Vernooij, and Marleen de Bruijne. Hydranet: Data augmentation for regression neural networks. In Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, and Ali Khan, editors, Medical Image Computing and Computer Assisted Intervention – MICCAI 2019, pages 438–446, Cham, 2019. Springer International Publishing. [6] Zach Eaton-Rosen, Felix Bragman, Sebastien Ourselin, and M Jorge Cardoso. Improving data augmentation for medical image segmentation. 2018. [7] Maayan Frid-Adar, Idit Diamant, Eyal Klang, Michal Amitai, Jacob Gold- berger, and Hayit Greenspan. Gan-based synthetic medical image augmentation for increased cnn performance in liver lesion classification. Neurocom- puting, 321:321–331, 2018. [8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde- Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014. [9] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, Los Alamitos, CA, USA, jun 2016. IEEE Computer Society. [10] Minui Hong, Jinwoo Choi, and Gunhee Kim. Stylemix: Separating content and style for enhanced data augmentation. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 14857–14865, 2021. [11] Umair Javaid, Damien Dasnoy, and John A. Lee. Semantic segmentation of computed tomography for radiotherapy with deep learning: compensating insufficient annotation quality using contour augmentation. In Elsa D. Angelini and Bennett A. Landman, editors, Medical Imaging 2019: Image Processing, volume 10949 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, page 109492P, March 2019. [12] Matej Kompanek, Martin Tamajka, and Wanda Benesova. Volumetrie data augmentation as an effective tool in mri classification using 3d convolutional neural network. In 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pages 115–119, 2019. [13] Egor Krivov, Maxim Pisov, and Mikhail Belyaev. MRI Augmentation via Elastic Registration for Brain Lesions Segmentation, pages 369–380. 12 2017. [14] Philippe Lambin, Emmanuel Rios-Velazquez, Ralph Leijenaar, Sara Carvalho, Ruud G.P.M. van Stiphout, Patrick Granton, Catharina M.L. Zegers, Robert Gillies, Ronald Boellard, Andr ́e Dekker, and Hugo J.W.L. Aerts. Radiomics: Extracting more information from medical images using advanced feature analysis. European Journal of Cancer, 48(4):441–446, 2012. [15] Lok Hin Lee, Yuan Gao, and J. Alison Noble. Principled ultrasound data augmentation for classification of standard planes. In Aasa Feragen, Stefan Sommer, Julia Schnabel, and Mads Nielsen, editors, Information Processing in Medical Imaging, pages 729–741, Cham, 2021. Springer International Publishing. [16] Junzhao Liang and Junying Chen. Data augmentation of thyroid ultrasound images using generative adversarial network. In 2021 IEEE International Ultrasonics Symposium (IUS), pages 1–4, 2021. [17] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen A.W.M. van der Laak, Bram van Ginneken, and Clara I. S ́anchez. A survey on deep learning in medical image analysis. Medical Image Analysis, 42:60–88, 2017. [18] Jakub Nalepa, Grzegorz Mrukwa, Szymon Piechaczek, Pablo Ribalta Lorenzo, Michal Marcinkiewicz, Barbara Bobek-Billewicz, Pawel Wawrzyniak, Pawel Ulrych, Janusz Szymanek, Marcin Cwiek, Wojciech Dudzik, Michal Kawu- lok, and Michael P. Hayball. Data augmentation via image registration. In 2019 IEEE International Conference on Image Processing (ICIP), pages 4250–4254, 2019. [19] N R Qureshi, N M Rahman, and F V Gleeson. Thoracic ultrasound in the diagnosis of malignant pleural effusion. Thorax, 64(2):139–143, October 2008. [20] Subhankar Roy, Willi Menapace, Sebastiaan Oei, Ben Luijten, Enrico Fini, Cristiano Saltori, Iris Huijben, Nishith Chennakeshava, Federico Mento, Alessandro Sentelli, Emanuele Peschiera, Riccardo Trevisan, Giovanni Maschietto, Elena Torri, Riccardo Inchingolo, Andrea Smargiassi, Gino Sol- dati, Paolo Rota, Andrea Passerini, Ruud J. G. van Sloun, Elisa Ricci, and Libertario Demi. Deep learning for classification and localization of covid-19 markers in point-of-care lung ultrasound. IEEE Transactions on Medical Imaging, 39(8):2676–2687, 2020. [21] Rohit Singla, Cailin Ringstrom, Ricky Hu, Victoria Lessoway, Janice Reid, Robert Rohling, and Christophe Nguan. Speckle and shadows: Ultrasound- specific physics-based data augmentation for kidney segmentation. In Ender Konukoglu, Bjoern Menze, Archana Venkataraman, Christian Baumgartner, Qi Dou, and Shadi Albarqouni, editors, Proceedings of The 5th International Conference on Medical Imaging with Deep Learning, volume 172 of Proceedings of Machine Learning Research, pages 1139–1148. PMLR, 06–08 Jul 2022. [22] E. J. Snider, S. I. Hernandez-Torres, and R. Hennessey. Using ultrasound image augmentation and ensemble predictions to prevent machine-learning model overfitting. Diagnostics (Basel, Switzerland), 13(3):417, 2023. [23] Cecilia Summers and Michael J. Dinneen. Improved mixed-example data augmentation. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1262–1270, 2019. [24] Ryo Takahashi, Takashi Matsubara, and Kuniaki Uehara. Data augmentation using random image cropping and patching for deep cnns. IEEE Transactions on Circuits and Systems for Video Technology, 30(9):2917–2931, 2020. [25] Lorenzo Tutino, Giovanni Cianchi, Francesco Barbani, Stefano Batacchi, Rita Cammelli, and Adriano Peris. Time needed to achieve completeness and accuracy in bedside lung ultrasound reporting in intensive care unit. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 18(1):44, August 2010. [26] Ruud J. G. van Sloun, Regev Cohen, and Yonina C. Eldar. Deep learning in ultrasound imaging. Proceedings of the IEEE, 108(1):11–29, 2020. [27] Ruud J. G. van Sloun and Libertario Demi. Localizing b-lines in lung ultra-sonography by weakly supervised deep learning, in-vivo results. IEEE Journal of Biomedical and Health Informatics, 24(4):957–964, 2020. [28] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv preprint arXiv:2207.02696, 2022. [29] Xiang Ying, Yulin Zhang, Xi Wei, Mei Yu, Jialin Zhu, Jie Gao, Zhiqiang Liu, Xuewei Li, and Ruiguo Yu. Msdan: Multi-scale self-attention unsupervised domain adaptation network for thyroid ultrasound images. In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 871–876, 2020. [30] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. International Conference on Learning Representations, 2018. |