帳號:guest(18.217.21.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖軒裕
作者(外文):Liao, Hsuan-Yu
論文名稱(中文):有色約束生成樹問題:難解的情況
論文名稱(外文):The Colored Constrained Spanning Tree Problem: Intractable Conditions
指導教授(中文):韓永楷
指導教授(外文):Hon, Wing-Kai
口試委員(中文):蔡孟宗
王弘倫
口試委員(外文):Tsai, Meng-Tsung
Wang, Hung-Lung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:110062581
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:26
中文關鍵詞:邊著色圖生成樹顏色限制NP困難性
外文關鍵詞:edge-colored graphspanning treecolored constraintNP-hardness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在本論文中,我們研究「邊著色圖」上的「有色約束生成樹問題」和「出度有色約束生成樹問題」。這些問題旨在尋找一個生成樹,其中每個節點的任意特定顏色的鄰邊(或出邊),其邊數不超過一個給定的常數。我們證明了當輸入的圖為有向圖時,這兩個問題皆為NP困難。此外,即使輸入為有向無環圖時,有色約束生成樹問題仍然是NP困難的。
In this thesis, we study the Colored Constrained Spanning Tree Problem (CCST problem) and the Colored Out-Constrained Spanning Tree Problem (COCST problem) on edge-colored graphs.
These problems aim to find a spanning tree such that for each vertex, the number of incident edges (or outgoing edges) sharing any specific color is bounded by a constant.
We demonstrate the NP-hardness of both problems when the input graphs are directed graphs.
Additionally, even when considering directed acyclic graphs (DAGs) as input, the CCST problem remains NP-hard.
Abstract (Chinese) i
Abstract ii
Acknowledgment iii
Contents v
1 Introduction 1
1.1 Thesis Organization . . . . . . . . . . . . . . . 2
1.2 Related Work . . . . . . . . . . . . . . . . . . . 2
1.3 Definitions . . . . . . . . . . . . . . . . . . . 3
1.4 Our Contributions . . . . . . . . . . . . . . . . 4
2 The κ-CCST Problem on DAGs 6
2.1 Proof of Claim 1 . . . . . . . . . . . . . . . . . 11
2.2 Proof of Claim 2 . . . . . . . . . . . . . . . . . 12
2.3 Extending to Bipartite Graphs . . . . . . . . . . 14
3 The κ-COCST Problem on Directed Graphs 15
3.1 Reducing κ-CCST to κ-COCST . . . . . . . . . . . 16
3.2 Proof of Claim 3 . . . . . . . . . . . . . . . . . 18
3.3 Proof of Claim 4 . . . . . . . . . . . . . . . . . 20
4 Conclusion 23
[1] Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive Guarantees for Degree-Bounded Directed Network Design. SIAM Journal on Computing, 39(4):1413–1431, 2010.
[2] V. Borozan, W. Fernandez de La Vega, Y. Manoussakis, C. Martinhon, R. Muthu, H.P. Pham, and R. Saad. Maximum Colored Trees in Edge-Colored Graphs. European Journal of Combinatorics, 80:296–310, 2019.
[3] Yangyang Cheng, Mikio Kano, and GuanghuiWang. Properly Colored Spanning Trees in Edge-Colored Graphs. Discrete Mathematics, 343(1):111629, 2020.
[4] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
[5] Jerrold W Grossman and Roland H¨aggkvist. Alternating Cycles in Edge-Partitioned Graphs. Journal of Combinatorial Theory, Series B, 34(1):77–81, 1983.
[6] Mikio Kano, Shunichi Maezawa, Katsuhiro Ota, Masao Tsugaki, and Takamasa Yashima. Color Degree Sum Conditions for Properly Colored Spanning Trees in Edge-Colored Graphs. Discrete Mathematics, 343(11):112042, 2020.
[7] Mikio Kano and Masao Tsugaki. Rainbow and Properly Colored Spanning Trees in Edge-Colored Bipartite Graphs. Graphs and Combinatorics, 37(5):1913–1921, 2021.
[8] Kazuhiro Suzuki. A Necessary and Sufficient Condition for the Existence of a Heterochromatic Spanning Tree in a Graph. Graphs and Combinatorics, 22(2):261–269, 2006.
[9] Anders Yeo. A Note on Alternating Cycles in Edge-Coloured Graphs. Journal of Combinatorial Theory, Series B, 69(2):222–225, 1997.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *