|
[1] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,” https://github.com/onnx/onnx, 2019. [2] M. Abadi, “Tensorflow: learning functions at scale,” in Proceedings of the 21st ACM SIGPLAN International Conference on Functional Pro- gramming, 2016, pp. 1–1. [3] N. Ketkar and N. Ketkar, “Introduction to keras,” Deep learning with python: a hands-on introduction, pp. 97–111, 2017. [4] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An imper- ative style, high-performance deep learning library,” Advances in neural information processing systems, vol. 32, 2019. [5] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang, Y. Hu, L. Ceze et al., “Tvm: An automated end-to-end op- timizing compiler for deep learning,” arXiv preprint arXiv:1802.04799, 2018. [6] T.-C. Chen, W.-T. Wang, K. Kao, C.-L. Yu, C. Lin, S.-H. Chang, and P.-K. Tsung, “Neuropilot: A cross-platform framework for edge-ai,” in 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), 2019, pp. 167–170 [7] Z. Chen, C. H. Yu, T. Morris, J. Tuyls, Y.-H. Lai, J. Roesch, E. Delaye, V. Sharma, and Y. Wang, “Bring your own codegen to deep learning compiler,” arXiv preprint arXiv:2105.03215, 2021. [8] Apache, “Using pipeline executor in relay.” [Online]. Avail- able: https://tvm.apache.org/docs/how_to/work_with_relay/using_ pipeline_executor.html [9] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis & transformation,” in International Symposium on Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004, pp. 75–86. [10] J. Roesch, S. Lyubomirsky, L. Weber, J. Pollock, M. Kirisame, T. Chen, and Z. Tatlock, “Relay: A new ir for machine learning frameworks,” in Proceedings of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming Languages, ser. MAPL 2018. New York, NY, USA: Association for Computing Machinery, 2018, p. 58–68. [Online]. Available: https://doi.org/10.1145/3211346.3211348 [11] Y. Gorbachev, M. Fedorov, I. Slavutin, A. Tugarev, M. Fatekhov, and Y. Tarkan, “Openvino deep learning workbench: Comprehensive analy- sis and tuning of neural networks inference,” in Proceedings of the IEEE/ CVF International Conference on Computer Vision Workshops, 2019, pp. 0–0. [12] H.-R. Huang, D.-Y. Hong, J.-J. Wu, P. Liu, and W.-C. Hsu, “Efficient video captioning on heterogeneous system architectures,” in 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2021, pp. 1035–1045. [13] P. Liu and J.-J. Wu, “Task scheduling techniques for deep learning in heterogeneous environment,” in 2019 Seventh International Symposium on Computing and Networking Workshops (CANDARW). IEEE, 2019, pp. 141–147. [14] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low- complexity task scheduling for heterogeneous computing,” IEEE trans- actions on parallel and distributed systems, vol. 13, no. 3, pp. 260–274, 2002.
|