帳號:guest(18.222.57.86)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):方博文
作者(外文):Fang, Bo-Wen
論文名稱(中文):考慮巨集之面對面三維積體電路設計全局放置
論文名稱(外文):Face-to-Face 3D-IC Design Global Placement With Macro Consideration
指導教授(中文):麥偉基
指導教授(外文):Mak, Wai-Kei
口試委員(中文):王廷基
陳宏明
口試委員(外文):Wang, Ting-Chi
Chen, Hung-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學號:110062523
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:26
中文關鍵詞:三維積體電路設計全局放置巨集面對面
外文關鍵詞:3D-IC DesignGlobal PlacementMacroFace-to-Face
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:24
  • 收藏收藏:0
在現今積體電路設計中,三維整合技術在半導體行業中具有顯著的潛
力,而在面對面三維積體電路設計中不同的晶片可以使用不同的元件庫,
一些現有的三維物理設計流程使用二維商業工具來處理三維積體電路物理
設計。這些當前的流程初步將三維設計轉化為二維,然後在流程的最後階
段將其恢復為三維積體電路設計。有幾項研究指出,在這從二維到三維的
恢復過程中,設計品質會有所降低。而其他的三維全局放置器可以在三維
空間中優化設計,並在全局放置階段之後決定一個元件屬於哪個晶片,然
而,這沒有考慮到在不同晶片上有不同元件庫所造成的差異。在我們的論
文中,我們採用靜電類比方法來建立三維積體電路設計中的密度函數模型,
提出了一種優化巨集之旋轉方向的方法,並為混合尺寸設計引入了更為精
確的評估收斂方法。實驗結果證明,我們的方法是有效的,可以直接優化
使用不同元件庫的晶片組成的三維設計。
In current IC design, 3D integration technology has significant potential in the semiconductor industry. Face-to-Face 3D-ICs can be implemented using different cell libraries. Some existing 3D physical design flows utilize 2D commercial tools to handle the physical design of 3D integrated circuits. These current flows initially convert the 3D design into 2D and then restore it to a 3D design in the final stages of the flow. However, several studies indicate a degradation of design quality during this restoration process from 2D to 3D. The other 3D global placers can optimize the design in a three-dimensional space and decide which die a cell belongs to after the global placement stage. However, it does not consider the difference caused by distinct dies utilizing different cell libraries. In this thesis, we use the electrostatic analogy approach to model a density function in 3D-IC design, propose a method for optimizing the rotation orientation of macros, and introduce a more precise evaluation convergence method for mixed-size design. Experimental results demonstrate that our approach is effective and can directly optimize 3D designs using different cell libraries for each die.
摘要 i
Abstract ii
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Preliminaries 5
2.1 2-Die Face-to-Face Placement of Contest . . . . . . . . . . . . . . . . . . . . 5
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Approach 7
3.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Global Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Local Density Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Condition of Converge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6 Heuristic Method of Macro Rotation . . . . . . . . . . . . . . . . . . . . . . . 15
3.7 Standard Cell Global Placement . . . . . . . . . . . . . . . . . . . . . . . . . 15
iii
4 Experimental Results 17
4.1 Experimental Environment and Benchmarks . . . . . . . . . . . . . . . . . . . 17
4.2 Comparison of HPWL for Our Method . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Runtime for Each Global Placement Stage . . . . . . . . . . . . . . . . . . . . 19
5 Conclusion 23
Bibliography 25
[1] I.-J. L. Y.-H. W. W.-H. C. Kai-Shun Hu, Hao-Yu Chi and Y.-T. Hsieh, “2023 iccad cad
contest problem b: 3d placement with macros.,” 2023 ICCAD CAD Contest Problem B.,
2023.
[2] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and C.-K. Cheng, “eplace:
Electrostatics based placement using nesterov’s method,” in 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6, 2014.
[3] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng, and C.-K. Cheng,
“Eplace: Electrostatics-based placement using fast fourier transform and nesterov’s
method,” ACM Trans. Des. Autom. Electron. Syst., vol. 20, mar 2015.
[4] J. Lu, H. Zhuang, P. Chen, H. Chang, C.-C. Chang, Y.-C. Wong, L. Sha, D. Huang, Y. Luo,
C.-C. Teng, and C.-K. Cheng, “eplace-ms: Electrostatics-based placement for mixed-size
circuits,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 34, no. 5, pp. 685–698, 2015.
[5] Y. Jiang, X. He, C. Liu, and Y. Guo, “An effective analytical 3d placer in monolithic 3d ic
designs,” in 2015 IEEE 11th International Conference on ASIC (ASICON), pp. 1–4, 2015.
[6] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Shrunk-2-d: A physical design methodology
to build commercial-quality monolithic 3-d ics,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 36, no. 10, pp. 1716–1724, 2017.
[7] B. W. Ku, K. Chang, and S. K. Lim, “Compact-2d: A physical design methodology to build
two-tier gate-level 3-d ics,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 6, pp. 1151–1164, 2020.
[8] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Placement-driven partitioning for congestion
mitigation in monolithic 3d ic designs,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 4, pp. 540–553, 2015.
[9] K. Chang, S. Sinha, B. Cline, R. Southerland, M. Doherty, G. Yeric, and S. K. Lim, “Cascade2d: A design-aware partitioning approach to monolithic 3d ic with 2d commercial
tools,” in 2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 1–8, 2016.
[10] M.-K. Hsu, V. Balabanov, and Y.-W. Chang, “Tsv-aware analytical placement for 3-d ic
designs based on a novel weighted-average wirelength model,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 4, pp. 497–509,
2013.
[11] W. C. Naylor, R. A. Donelly, and L. Sha, “Non-linear optimization system and method for
wire length and delay optimization for an automatic electric circuit placer,” 2001.
[12] G. Luo, Y. Shi, and J. Cong, “An analytical placement framework for 3-d ics and its extension on thermal awareness,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 4, pp. 510–523, 2013.
[13] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie, “Mpl6: Enhanced multilevel
mixed-size placement,” in Proceedings of the 2006 International Symposium on Physical Design, ISPD ’06, (New York, NY, USA), p. 212–214, Association for Computing
Machinery, 2006.
[14] J. Cong and G. Luo, “A multilevel analytical placement for 3d ics,” in 2009 Asia and
South Pacific Design Automation Conference, pp. 361–366, 2009.
[15] J. Lu, H. Zhuang, I. Kang, P. Chen, and C.-K. Cheng, “Eplace-3d: Electrostatics based
placement for 3d-ics,” in Proceedings of the 2016 on International Symposium on Physical Design, ISPD ’16, (New York, NY, USA), p. 11–18, Association for Computing
Machinery, 2016.
[16] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legalization of standard
cell circuits with minimal movement,” in Proceedings of the 2008 international symposium on Physical design, pp. 47–53, 2008.
[17] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing solution quality
and routability validation in global placement,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 38, no. 9, pp. 1717–1730, 2019.
[18] M.-K. Hsu, Y.-W. Chang, and V. Balabanov, “Tsv-aware analytical placement for 3d ic
designs,” in 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 664–
669, 2011.
[19] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2023.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *