帳號:guest(18.188.108.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄧向凱
作者(外文):Teng, Hsiang-Kai
論文名稱(中文):一個使用乒乓型延遲線且支援寬頻率範圍的高彈性全數位鎖相迴路
論文名稱(外文):A Highly Resilient ADPLL Using Ping-pong Delay Line Supporting A Wide Frequency Range
指導教授(中文):黃錫瑜
指導教授(外文):Huang, Shi-Yu
口試委員(中文):呂學坤
盛鐸
口試委員(外文):Lu, Shyue-Kung
Sheng, Duo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061641
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:41
中文關鍵詞:全數位鎖相迴路乒乓延遲線寬頻率範圍追蹤抖動減少
外文關鍵詞:ADPLLping-pongdelay_linewide_frequency_trackingjitter_reduction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:245
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
全數位鎖相迴路可在數位系統中實現高精準度的鎖相和時脈訊號生成。本論文介紹了一種創新的全數位鎖相迴路,它採用穩健的延遲線配置,可增強系統在不斷變化的環境條件下的彈性。所提出的全數位鎖相迴路整合了一對延遲線,我們稱為乒乓型延遲線,以動態交換機制運行,允許在不影響環路運行完整性的情況下實現較寬的頻率追蹤範圍。此外,我們使用了一次性的動態校正策略來解決迴路中多路復用器的延遲時間會有不匹配的問題。在供應電壓變化的情況下,包括在 15 微秒內電壓從1伏特驟降至0.97伏特,所提出的全數位鎖相迴路表現出穩定的性能,突顯了其在極端應用中的潛力。所提出的全數位鎖相迴路在使用90nm製程,面積為 0.04 平方毫米,輸出時脈頻率範圍為 0.45GHz 至 1.45GHz。當輸出時脈為1GHz 時功耗僅為 3.49mW。
The All-digital Phase Locked Loop (ADPLL) is to achieve high-precision phase locking and clock generation in digital systems. This thesis presents an innovative ADPLL with a robust delay line configuration that enhances system resilience across changing environmental conditions. The proposed ADPLL integrates a pair of delay lines, called ping-pong delay line, which operates in a dynamic swapping mechanism, allowing a wide frequency tracking range without compromising the integrity of the loop operation. In addition, we implement a one-time dynamic calibration scheme to address the issue of mismatched delay times of the multiplexers in the loops. Under the VDD-changing scenario, which includes a precipitous voltage drop from 1V to 0.97V within 15 microseconds, the proposed ADPLL demonstrated consistent performance, highlighting its potential for extreme applications. The proposed ADPLL utilizes 90nm process and occupies an area of 0.04mm2. Its output clock frequency ranges from 0.45GHz to 1.45GHz, consuming only 3.49mW of power at 1GHz.
Abstract i
摘要 ii
誌謝 iii
Content iv
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Thesis Organization 4
Chapter 2 Preliminaries 5
2.1 Specification of Baseline ADPLL 5
2.2 Architecture of Baseline ADPLL 5
2.3 Previous Work of Tackling Segment-jumping Problem 8
2.4 Objective of This Work 12
Chapter 3 Proposed New Ping-pong Scheme for ADPLL 14
3.1 Ping-pong ADPLL with Static Calibration 14
3.2 Ping-pong ADPLL with Dynamic Calibration 20
Chapter 4 Simulation Results 24
4.1 Simulation Results of Baseline ADPLL 24
4.2 Simulation Results of Ping-pong ADPLL with Static Calibration 27
4.3 Simulation Results of Ping-pong ADPLL with Dynamic Calibration 30
Chapter 5 Conclusion 38
References 39
[1] J. A. Tierno, A. V. Rylyakov, and D. J. Friedman, "A wide power supply range, wide tuning range, all static CMOS all digital PLL in 65 nm SOI," IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 42–51, Jan. 2008.
[2] W. Liu, W. Li, P. Ren, C. Lin, S. Zhang, and Y. Wang, "A PVT tolerant 10 to 500 MHz all-digital phase-locked loop with coupled TDC and DCO," IEEE J. Solid-State Circuits, vol. 45, no. 2, pp.314-321, Feb. 2010.
[3] C.-C. Chung, D. Sheng, and W.-S. Su, "A 0.5 V/1.0 V fast lock-in ADPLL for DVFS battery-powered devices," in Proc. Int. Symp. VLSI Design, Autom., Test (VLSI-DAT), pp. 1–4, Apr. 2013.
[4] Y.-C. Ho, Y.-S. Yang, C.-C. Chang, C.-C. Su, "A near-threshold 480 MHz 78 µW all-digital PLL with a bootstrapped DCO", IEEE Journal of Solid-State Circuits, vol.48, no.11, pp.2805-2814, Nov. 2013.
[5] Y.-D. Zhang, X.-F. Liu, W.-G. Rhee, H.-J. Jiang, Z.-H. Wang, "A 0.6V 50-to-145MHz PVT tolerant digital PLL with DCO-dedicated ΔΣ LDO and temperature compensation circuits in 65nm CMOS", 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1-4, May. 2017.
[6] C.-C. Chang, Y.-T. Chin, Hossameldin A. Ibrahim, K.-Y. Chang, S.-J. Jou, "A low-jitter ADPLL with adaptive high-order loop filter and fine grain varactor based DCO", 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1-5, May. 2021.
[7] C.-E. Lee and S.-Y. Huang, "A cell-based fractional-N phase-locked loop compiler," Proc. of IEEE Int'l Conf. on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design (SMACD), pp. 273-276, Jul. 2018.
[8] Y.-S. Wang, H.-K. Teng, and S.-Y. Huang, "Optimization of DCO using latch-based varactor cells for a cell-based PLL", Proc. of IEEE Midwest Symp. on Circuits and Systems, Aug. 2023.
[9] H.-H. Chang, S.-M. Lee, C.-W. Chou, Y.-T. Chang, and Y.-L. Cheng, “A 1.6–880 MHz synthesizable ADPLL in 0.13 μm CMOS,” in Proc. Int. Symp. VLSI Design, Autom. Test, pp. 9–12., Apr. 2008.
[10] P.-Y. Chao, C.-W. Tzeng, S.-Y. Huang, C.-C. Weng, and S.-C. Fang, "Process resilient low-jitter all-digital PLL via smooth code jumping", IEEE Trans. on VLSI Systems (TVLSI), Vol. 21, No. 12, pp. 2240-2249, Dec. 2013.
[11] Z.-H. Zhang, W. Chu, and S.-Y. Huang, "A ping-pong methodology for boosting the resilience of cell-based delay-locked loop", IEEE Access, Vol. 7, pp. 97928-97937, Aug. 2019.
[12] P.-L. Chen, C.-C. Chung, and C.-Y. Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Trans. on Circuits and System II, Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
[13] D. Sheng, C.-C. Chung, and C.-Y. Lee, “An ultra-low-power and portable digitally controlled oscillator for SoC applications,” IEEE Trans. on Circuits and System II, Express Briefs, vol. 54, no. 11, pp. 954-958, Nov. 2007.
[14] Y.-H. Ho and C.-Y. Yao, "A low-jitter fast-locked all-digital phase-locked loop with phase–frequency-error compensation," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 24, no. 5, pp. 1984–1992, May. 2016.
[15] K.-H. Cheng, Y.-C. Tsai, Y.-L. Lo, and J.-S. Huang, "A 0.5-V 0.4–2.24-GHz inductorless phase-locked loop in a system-on-chip," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 849–859, May 2011.
[16] K.-H. Cheng, K.-W. Hong, C.-H. Chen, and J.-C. Liu, "A high precision fast locking arbitrary duty cycle clock synchronization circuit," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1218–1228, Jul. 2011.
[17] W.-H. Chen, W.-F. Loke, and B. Jung, "A 0.5-V, 440-µW frequency synthesizer for implantable medical devices," IEEE J. Solid-State Circuits, vol. 47, no. 8, pp. 1896–1907, Aug. 2012.
[18] K.-H. Cheng, K.-W. Hong, C.-F. Hsu, and B.-Q. Jiang, "An all-digital clock synchronization buffer with one cycle dynamic synchronizing," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 1818–1827, Oct. 2012.
[19] J.-W. Moon, K.-C. Choi, and W.-Y. Choi, "A 0.4-V, 90–350 MHz PLL with an active loop-filter charge pump," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 5, pp. 319–323, May 2014.
[20] J. Kim and S. Han, "A fast-locking all-digital multiplying dll for fractional-ratio dynamic frequency scaling," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 3, pp. 276–280, Mar. 2018.
[21] S.-H. Wang and C.-C. Hung, “A 0.35-V 240-µW fast-lock and low phase-noise frequency synthesizer for implantable biomedical applications," IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 6, pp. 1759–1770, Dec. 2019.
[22] H. H. Cheong and S. Kim, "A fast-locking all-digital PLL with triple-stage phase-shifting," IEEE Access, vol. 9, pp. 160224–160237, Nov. 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *