帳號:guest(18.224.60.242)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):詹育平
作者(外文):Zhan, Yu-Ping
論文名稱(中文):通過系統生物學方法、基於 DNN 的 DTI 模型和全基因組微陣列數據進行銀屑病藥物靶標識別和藥物再利用
論文名稱(外文):Drug target identification and drug repurposing in psoriasis through systems biology approach, DNN-based DTI model and genome-wide microarray data
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):謝宗翰
吳建鋒
練光祐
口試委員(外文):Hsieh, Chung-Han
Wu, Chien-Feng
Lian, Kuang-Yow
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061606
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:53
中文關鍵詞:銀屑病的發病機制系統生物學方法核心信號通路基於DNN的DTI模型藥品設計規範多分子藥物大數據挖掘DTI數據庫
外文關鍵詞:pathogenesis of psoriasisdrug design specificationssystems biology methodkey signaling pathwaysDNN-based DTI modelmulti-molecule drugbig data miningDTI databases
相關次數:
  • 推薦推薦:0
  • 點閱點閱:256
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
全球有數以百萬計的人患有慢性皮膚疾病—牛皮癣。在2014年,世界衛生組織(WHO)將牛皮癣確定為嚴重的非傳染性疾病。在這項研究中,我們運用系統生物學的方法來探究牛皮癣的潛在病因,並識別潛在的藥物治療靶點。該研究運用大數據挖掘來構建候選的全基因組遺傳和表觀遺傳網絡(GWGEN)。隨後,我們應用系統順序檢測和系統識別方法,以識別在牛皮癣和非牛皮癣狀態下的真實GWGEN。利用主要網絡投影(PNP)方法提取核心GWGEN,並使用京都基因和基因組百科全書(KEGG)通路對相應的關鍵信號通路進行了註解。通過比較牛皮癣和非牛皮癣的關鍵信號通路及其下游的細胞異常,我們確定了NF-κB、STAT3、CEBPB和FOXO1作為重要的發病生物標記,並被認為是牛皮癣治療的藥物靶點。隨後,我們訓練了基於深度神經網絡的藥物-靶點互作模型,用於預測候選分子藥物。通過考慮足夠的敏感性、毒性和調控能力作為藥物設計規範,我們從候選分子藥物中選擇了柚皮素、芒柄花素和萜烯酸,將其結合成潛在的多分子藥物,用於牛皮癣的治療。
Psoriasis, a chronic skin condition, affects millions of individuals worldwide. In 2014, psoriasis was acknowledged as a severe non-communicable disease by the World Health Organization (WHO). In this study, we utilized a systems biology approach to investigate the underlying pathogenesis of psoriasis and identify potential drug targets for therapeutic treatment. The study conducting big data mining to construct a candidate genome-wide genetic and epigenetic network (GWGEN). Subsequently, we applied system order detection and system identification methods to identify real GWGENs in psoriatic and non-psoriatic conditions. Core GWGENs were extracted using the Principal Network Projection (PNP) method, and the corresponding key signaling pathways were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Through the comparison of key signaling pathways between psoriasis and non-psoriasis conditions and their downstream cellular abnormalities, NF-κB, STAT3, CEBPB, and FOXO1 were identified as significant biomarkers of pathogenesis and were considered to be drug targets for the therapeutic treatment of psoriasis. Then, DNN-based DTI model was trained to predict candidate molecular drugs. By considering adequate sensitivity, toxicity, and regulatory ability as drug design specifications, Naringin, Butein, and Betulinic acid were selected from the candidate molecular drugs and combined into potential multi-molecule drugs for the treatment of psoriasis.
摘要----I
Abstract----II
誌謝----III
Contents----IV
1.Introduction----1
2. Results----11
2.1 An overview of Systems Biology Approaches for the Study of Pathogenesis and Systematic Drug Design and Discovery for treating Psoriasis----11
2.2. The key Signaling Pathways and Associated Cellular Dysfunctions for Investigating the Molecular Pathogenesis of Psoriasis----14
2.3 The Specific Molecular Pathogenesis of Non-Psoriasis ----18
2.4. Design and Discovery of Potential Multi-Molecular drugs for treatment of psoriasis by Drug Design Specifications and Deep Neural Network-Based Drug-Target Interaction Model----18
3. Discussion ----25
4. Materials and Methods ----27
4.1 A Overview of the process of constructing core Genome-Wide Genetic and Epigenetic Networks (GWGENs) for both psoriasis and non-psoriasis----26
4.2 Data collection and preprocessing of microarray data and candidate GWGENs----28
4.3 Building the Stochastic System Models of Candidate GWGEN----29
4.4 System Order Detection Method and System Identification Scheme for Removing False Positives and Detecting Real GWGENs in Psoriasis and Non-Psoriasis----32
4.5 Extracting the Core GWGENs via Principal Network Projection (PNP) method from the Real GWGENs----37
4.6 Design and Discovery of Multi-Molecule Drug for Treatment of Psoriasis by DNN-Based DTI Model----40
5. Conclusions----43
Reference ----44
1. Lowes, M.A.; Bowcock, A.M.; Krueger, J.G.J. Pathogenesis and therapy of psoriasis. Nature 2007, 445, 866–873.
2. Magin, P.; Adams, J.; Heading, G.; Pond, D.; Smith, W.J. The psychological sequelae of psoriasis: Results of a qualitative study. Psychology, health & medicine, 2009, 14, 150–161.
3. Michalek, I.; Loring, B.; John, S.J. Venereology. A systematic review of worldwide epidemiology of psoriasis. J Eur Acad Dermatol, 2017, 31, 205–212.
4. World Health Organization. World Health Organization Global Report on Psoriasis; World Health Organization: Geneva, Switzerland, 2016.
5. Bhalerao, J.; Bowcock, A.M. The genetics of psoriasis: A complex disorder of the skin and immune system. Human molecular genetics, 1998, 7, 1537–1545.
6. Rendon, A.; Schäkel, K. Psoriasis pathogenesis and treatment.INT. J. MOL. SCI. 2019, 20, 1475.
7. Hayes, J.; Koo, J.J.D.t. Psoriasis: Depression, anxiety, smoking, and drinking habits. Dermatologic therapy 2010, 23, 174–180.
8. Hengge, U.R.; Ruzicka, T.; Schwartz, R.A.; Cork, M.J. J. Am. Acad. Dermatol.2006, 54, 1–15.
9. Zhang, P.; Wu, M.X. A clinical review of phototherapy for psoriasis. JAAD 2018, 33, 173–180.
10. Seebode, C.; Lehmann, J.; Emmert, S. Photocarcinogenesis and skin cancer prevention strategies. Anticancer Res. 2016, 36, 1371–1378.
11. Boffa, M.; Chalmers, R.J.G.; dermatology, e. Methotrexate for psoriasis. Clin. Exp. Dermatol. 1996, 21, 399–408.
12. Honda, H.; Umezawa, Y.; Kikuchi, S.; Yanaba, K.; Fukuchi, O.; Ito, T.; Nobeyama, Y.; Asahina, A.; Nakagawa, H. Switching of biologics in psoriasis: Reasons and results. Br. J. Dermatol. 2017, 44, 1015–1019.
13. Hughes, J.P.; Rees, S.; Kalindjian, S.B.; Philpott, K.L. Principles of early drug discovery. Br. J. Dermatol 2011, 162, 1239–1249.
14. Akhondzadeh, S.J.A. The importance of clinical trials in drug development. 2016, 8, 151.
15. Weaver, M.F.; Hopper, J.A.; Gunderson, E.W. ; practice, c. Designer drugs 2015: Assessment and management. Addict Sci Clin Pract 2015, 10, 8.
16. Jain, H.; Bhat, A.R.; Dalvi, H.; Godugu, C.; Singh, S.B.; Srivastava, S. Repurposing approved therapeutics for new indication: Addressing unmet needs in psoriasis treatment. Pharmacol. Res. 2021, 2, 100041.
17. Ting, C.-T.; Chen, B.-S. Repurposing Multiple-Molecule Drugs for COVID-19-Associated Acute Respiratory Distress Syndrome and Non-Viral Acute Respiratory Distress Syndrome via a Systems Biology Approach and a DNN-DTI Model Based on Five Drug Design Specifications. INT. J. MOL. SCI. 2022, 23, 3649.
18. Wang, C.-G.; Chen, B.-S. Multiple-Molecule Drug Repositioning for Disrupting Progression of SARS-CoV-2 Infection by Utilizing the Systems Biology Method through Host-Pathogen-Interactive Time Profile Data and DNN-Based DTI Model with Drug Design Specifications. Stresses 2022, 2, 405–436.
19. Yeh, S.-J.; Chung, Y.-C.; Chen, B.-S. Investigating the Role of Obesity in Prostate Cancer and Identifying Biomarkers for Drug Discovery: Systems Biology and Deep Learning Approaches. Molecules 2022, 27, 900.
20. Yeh, S.-J.; Lin, J.-F.; Chen, B.-S. Multiple-molecule drug design based on systems biology approaches and deep neural network to mitigate human skin aging. Molecules 2021, 26, 3178.
21. Bozdogan, H. Model selection and Akaike’s information criterion (AIC): The general theory and its analytical extensions. Psychometrika 1987, 52, 345–370.
22. Grossman, R.M.; Krueger, J.; Yourish, D.; Granelli-Piperno, A.; Murphy, D.P.; May, L.T.; Kupper, T.S.; Sehgal, P.B.; Gottlieb, A.B. Interleukin 6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc. Natl. Acad. Sci. 1989, 86, 6367–6371.
23. Fiocco, U.; Accordi, B.; Martini, V.; Oliviero, F.; Facco, M.; Cabrelle, A.; Piva, L.; Molena, B.; Caso, F.; Costa, L. JAK/STAT/PKCδ molecular pathways in synovial fluid T lymphocytes reflect the in vivo T helper-17 expansion in psoriatic arthritis. J. Immunol. Res 2014, 58, 61–69.
24. Nogueira, M.; Puig, L.; Torres, T. JAK inhibitors for treatment of psoriasis: Focus on selective TYK2 inhibitors. Drugs 2020, 80, 341–352.
25. Levy, D.E.; Lee, C.-k. What does Stat3 do? J. Clin. Investig 2002, 109, 1143–1148.
26. Ben-Bassat, H.; Klein, B. Inhibitors of tyrosine kinases in the treatment of psoriasis. Curr. Pharm. Des. 2000, 6, 933–942.
27. Canavese, M.; Altruda, F.; Ruzicka, T.; Schauber, J. Vascular endothelial growth factor (VEGF) in the pathogenesis of psoriasis—A possible target for novel therapies? J. Dermatol. Sci 2010, 58, 171–176.
28. Marina, M.E.; Roman, I.I.; Constantin, A.-M.; Mihu, C.M.; Tătaru, A.D. VEGF involvement in psoriasis. Clujul medl 2015, 88, 247.
29. Koçak, M.; Bozdoǧan, Ö.; Erkek, E.; Atasoy, P.; Birol, A. Examination of Bcl-2, Bcl-X and bax protein expression in psoriasis. Int. J. Dermatol. 2003, 42, 789–793.
30. Wrone-Smith, T.; Johnson, T.; Nelson, B.; Boise, L.H.; Thompson, C.B.; Nunez, G.; Nickoloff, B. Discordant expression of Bcl-x and Bcl-2 by keratinocytes in vitro and psoriatic keratinocytes in vivo. Am. J. Pathol. 1995, 146, 1079.
31. Basu, A.; Das, A.S.; Sharma, M.; Pathak, M.P.; Chattopadhyay, P.; Biswas, K.; Mukhopadhyay, R.J.B. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema. Biochem. Biophys. Rep. 2017, 12, 54–61.
32. El-Komy, M.; Amin, I.; Zidan, A.; Kadry, D.; Zeid, O.; Shaker, O. Venereology. Insulin-like growth factor-1 in psoriatic plaques treated with PUVA and methotrexate. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1288–1294.
33. Cheskis, B.J.; Greger, J.; Cooch, N.; McNally, C.; Mclarney, S.; Lam, H.-S.; Rutledge, S.; Mekonnen, B.; Hauze, D.; Nagpal, S. MNAR plays an important role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids 2008, 73, 901–905.
34. Zhang, M.; Zhang, X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch. Dermatol. Res. 2019, 311, 83–91.
35. Chen, W.; Xie, K.; Liu, X.; Chen, H. Identification of key pathways and genes in psoriasis via gene microarray analysis. Mol. Med. Rep. 2016, 13, 2327–2337.
36. Xie, S.; Chen, Z.; Wang, Q.; Song, X.; Zhang, L. Comparisons of gene expression in normal, lesional, and non-lesional psoriatic skin using DNA microarray techniques. Int. J. Dermatol. 2014, 53, 1213–1220.
37. Choi, J.; Crotty, S. Bcl6-mediated transcriptional regulation of follicular helper T cells (TFH). Trends Immunol. 2021, 42, 336–349.
38. Nurieva, R.I.; Chung, Y.; Martinez, G.J.; Yang, X.O.; Tanaka, S.; Matskevitch, T.D.; Wang, Y.-H.; Dong, C. Bcl6 mediates the development of T follicular helper cells. Science. 2009, 325, 1001–1005.
39. Liu, X.; Wang, J.; Shen, L.; Wang, R.; Zhang, L.; Li, C. Single-cell atlas reveals a high selection of IgA1-or IgG1-expressing plasma cells in patients with psoriasis. Mol. Immunol. 2023, 153, 85–93.
40. Goldminz, A.; Au, S.; Kim, N.; Gottlieb, A.; Lizzul, P. NF-κB: An essential transcription factor in psoriasis. J. Dermatol. Sci. 2013, 69, 89–94.
41. Abdou, A.G.; Hanout, H.M. Evaluation of survivin and NF-κB in psoriasis, an immunohistochemical study. J. Cutan. Pathol. 2008, 35, 445–451.
42. Wu, Y.; Chen, X.; Ge, X.; Xia, H.; Wang, Y.; Su, S.; Li, W.; Yang, T.; Wei, M.; Zhang, H. Isoliquiritigenin prevents the progression of psoriasis-like symptoms by inhibiting NF-κB and proinflammatory cytokines. J. Mol. Med 2016, 94, 195–206.
43. Lin, Z.C.; Hsieh, P.W.; Hwang, T.L.; Chen, C.Y.; Sung, C.T.; Fang, J. Topical application of anthranilate derivatives ameliorates psoriatic inflammation in a mouse model by inhibiting keratinocyte-derived chemokine expression and neutrophil infiltration. FASEB J. 2018, 32, 6783–6795.
44. Ferrari, S.M.; Ruffilli, I.; Colaci, M.; Antonelli, A.; Ferri, C.; Fallahi, P. CXCL10 in psoriasis. Adv Med Sci 2015, 60, 349–354.
45. Martin, D.A.; Towne, J.E.; Kricorian, G.; Klekotka, P.; Gudjonsson, J.E.; Krueger, J.G.; Russell, C.B. The emerging role of IL-17 in the pathogenesis of psoriasis: Preclinical and clinical findings. J. Invest. Dermatol. 2013, 133, 17–26.
46. Lai, Y.; Li, D.; Li, C.; Muehleisen, B.; Radek, K.A.; Park, H.J.; Jiang, Z.; Li, Z.; Lei, H.; Quan, Y. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. immunity 2012, 37, 74–84.
47. Slivka, P.F.; Hsieh, C.-L.; Lipovsky, A.; Pratt, S.D.; Locklear, J.; Namovic, M.T.; McDonald, H.A.; Wetter, J.; Edelmayer, R.; Hu, M. Small molecule and pooled CRISPR screens investigating IL17 signaling identify BRD2 as a novel contributor to keratinocyte inflammatory responses. ACS Chem. Biol 2019, 14, 857–872.
48. Shen, F.; Hu, Z.; Goswami, J.; Gaffen, S.L. Identification of common transcriptional regulatory elements in interleukin-17 target genes. J. Biol. Chem 2006, 281, 24138–24148.
49. Xia, P.; Pasquali, L.; Gao, C.; Srivastava, A.; Khera, N.; Freisenhausen, J.C.; Luo, L.; Rosén, E.; van Lierop, A.; Homey, B. miR-378a regulates keratinocyte responsiveness to interleukin-17A in psoriasis. Br. J. Dermatol. 2022, 187, 211–222.
50. Hammarström, S.; Hamberg, M.; Samuelsson, B.; Duell, E.A.; Stawiski, M.; Voorhees, J. Increased concentrations of nonesterified arachidonic acid, 12L-hydroxy-5, 8, 10, 14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2alpha in epidermis of psoriasis. Proc. Natl. Acad. Sci. 1975, 72, 5130–5134.
51. Neisius, U.; Olssonb, R.; Rukwied, R.; Lischetzki, G.; Schmelz, M. Prostaglandin E2 induces vasodilation and pruritus, but no protein extravasation in atopic dermatitis and controls. J. Invest. Dermatol 2002, 47, 28–32.
52. Greaves, M.; Wall, P. Pathophysiology of itching. Lancet 1996, 348, 938–940.
53. Victor, F.C.; Gottlieb, A.B. TNF-alpha and apoptosis: Implications for the pathogenesis and treatment of psoriasis. J Drugs Dermatol 2002, 1, 264–275.
54. Gottlieb, A.B.; Chamian, F.; Masud, S.; Cardinale, I.; Abello, M.V.; Lowes, M.A.; Chen, F.; Magliocco, M.; Krueger, J. TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J. Immunol. 2005, 175, 2721–2729.
55. Grine, L.; Dejager, L.; Libert, C.; Vandenbroucke, R.E. An inflammatory triangle in psoriasis: TNF, type I IFNs and IL-17. Cytokine Growth Factor Rev. 2015, 26, 25–33.
56. Ofengeim, D.; Yuan, J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat. Rev. Mol. Cell Biol. 2013, 14, 727–736.
57. Johansen, C.; Kragballe, K.; Westergaard, M.; Henningsen, J.; Kristiansen, K.; Iversen, L. The mitogen-activated protein kinases p38 and ERK1/2 are increased in lesional psoriatic skin. Br. J. Dermatol. 2005, 152, 37–42.
58. Yu, X.-J.; Li, C.-Y.; Dai, H.-Y.; Cai, D.-X.; Wang, K.-Y.; Xu, Y.-H.; Chen, L.-M.; Zhou, C.-L. Expression and localization of the activated mitogen-activated protein kinase in lesional psoriatic skin. Exp. Mol. Pathol. 2007, 83, 413–418.
59. Wang, S.; Uchi, H.; Hayashida, S.; Urabe, K.; Moroi, Y.; Furue, M. Differential expression of phosphorylated extracellular signal-regulated kinase 1/2, phosphorylated p38 mitogen-activated protein kinase and nuclear factor-κB p105/p50 in chronic inflammatory skin diseases. Br. J. Dermatol.2009, 36, 534–540.
60. Takahashi, H.; Ibe, M.; Nakamura, S.; Ishida-Yamamoto, A.; Hashimoto, Y.; Iizuka, H. Extracellular regulated kinase and c-Jun N-terminal kinase are activated in psoriatic involved epidermis. J. Dermatol. Sci 2002, 30, 94–99.
61. Meng, Q.; Xia, Y. c-Jun, at the crossroad of the signaling network. Protein Cell 2011, 2, 889–898.
62. Kioussi, C.; Briata, P.; Baek, S.H.; Rose, D.W.; Hamblet, N.S.; Herman, T.; Ohgi, K.A.; Lin, C.; Gleiberman, A.; Wang, J. Identification of a Wnt/Dvl/β-catenin→ Pitx2 pathway mediating cell-type-specific proliferation during development. Cell 2002, 111, 673–685.
63. Malakou, L.S.; Gargalionis, A.N.; Piperi, C.; Papadavid, E.; Papavassiliou, A.G.; Basdra, E.K. Molecular mechanisms of mechanotransduction in psoriasis. Ann. Transl. Med. 2018, 6, 245.
64. Gudjonsson, J.E.; Johnston, A.; Stoll, S.W.; Riblett, M.B.; Xing, X.; Kochkodan, J.J.; Ding, J.; Nair, R.P.; Aphale, A.; Voorhees, J. Evidence for altered Wnt signaling in psoriatic skin. J. Invest. Dermatol.2010, 130, 1849–1859.
65. Subramanian, A.; Narayan, R.; Corsello, S.M.; Peck, D.D.; Natoli, T.E.; Lu, X.; Gould, J.; Davis, J.F.; Tubelli, A.A.; Asiedu, J. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 2017, 171, 1437–1452.e1417.
66. Seçilmiş, D.; Hillerton, T.; Morgan, D.; Tjärnberg, A.; Nelander, S.; Nordling, T.E.; Sonnhammer, E.L. Uncovering cancer gene regulation by accurate regulatory network inference from uninformative data. NPJ 2D Mater. Appl. 2020, 6, 37.
67. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14.
68. Corsello, S.M.; Nagari, R.T.; Spangler, R.D.; Rossen, J.; Kocak, M.; Bryan, J.G.; Humeidi, R.; Peck, D.; Wu, X.; Tang, A.A. Discovering the anticancer potential of non-oncology drugs by systematic viability profiling. Nature cancer 2020, 1, 235–248.
69. Cichewicz, R.H.; Kouzi, S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 2004, 24, 90–114.
70. Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med Res Rev 2009, 29, 767–820.
71. Wan, Y.; Wu, Y.-L.; Lian, L.-H.; Xie, W.-X.; Li, X.; OuYang, B.-Q.; Bai, T.; Li, Q.; Yang, N.; Nan, J.-X. The anti-fibrotic effect of betulinic acid is mediated through the inhibition of NF-κB nuclear protein translocation. Chem. Biol. Interact 2012, 195, 215–223.
72. Hollis, A.; Sperl, B.; Gräber, M.; Berg, T. The natural product betulinic acid inhibits C/EBP family transcription factors. ChemBioChem, 2012, 13, 302–307.
73. Lin, C.K.; Tseng, C.K.; Chen, K.H.; Wu, S.H.; Liaw, C.C.; Lee, J.C. Betulinic acid exerts anti-hepatitis C virus activity via the suppression of NF-κ B-and MAPK-ERK 1/2-mediated COX-2 expression. Br. J. Pharmacol. 2015, 172, 4481–4492.
74. Lee, J.-C.; Lee, K.-Y.; Kim, J.; Na, C.-S.; Jung, N.-C.; Chung, G.-H.; Jang, Y.-S.J.F.; Toxicology, C. Extract from Rhus verniciflua Stokes is capable of inhibiting the growth of human lymphoma cells. Food Chem. Toxicol.2004, 42, 1383–1388.
75. Lee, S.H.; Seo, G.S.; Sohn, D.H. Inhibition of lipopolysaccharide-induced expression of inducible nitric oxide synthase by butein in RAW 264.7 cells. Biochem. Biophys. Res. Commun. 2004, 323, 125–132.
76. Pandey, M.K.; Sung, B.; Ahn, K.S.; Aggarwal, B.B. Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol. Pharmacol. 2009, 75, 525–533.
77. Seo, W.Y.; Youn, G.S.; Choi, S.Y.; Park, J. Butein, a tetrahydroxychalcone, suppresses pro-inflammatory responses in HaCaT keratinocytes. BMB Rep 2015, 48, 495.
78. Wang, Z.; Lee, Y.; Eun, J.S.; Bae, E.J. Inhibition of adipocyte inflammation and macrophage chemotaxis by butein. Eur. J. Pharmacol.2014, 738, 40–48.
79. Chanet, A.; Milenkovic, D.; Manach, C.; Mazur, A.; Morand, C.J. Citrus flavanones: What is their role in cardiovascular protection? J. Agric. Food Chem.2012, 60, 8809–8822.
80. Benavente-Garcia, O.; Castillo, J. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem.2008, 56, 6185–6205.
81. Salama, A.A.; Yassen, N.N.; Mansour, H.M. Naringin protects mice from D-galactose-induced lung aging and mitochondrial dysfunction: Implication of SIRT1 pathways. Life Sci. 2023, 324, 121471.
82. Liu, Y.; Su, W.-W.; Wang, S.; Li, P.-B. Naringin inhibits chemokine production in an LPS-induced RAW 264.7 macrophage cell line. Mol. Med. Rep. 2012, 6, 1343–1350.
83. Amaro, M.I.; Rocha, J.; Vila-Real, H.; Eduardo-Figueira, M.; Mota-Filipe, H.; Sepodes, B.; Ribeiro, M.H. Anti-inflammatory activity of naringin and the biosynthesised naringenin by naringinase immobilized in microstructured materials in a model of DSS-induced colitis in mice. Food Res. Int.2009, 42, 1010–1017.
84. Deenonpoe, R.; Prayong, P.; Thippamom, N.; Meephansan, J.; Na-Bangchang, K. Anti-inflammatory effect of naringin and sericin combination on human peripheral blood mononuclear cells (hPBMCs) from patient with psoriasis. BMC Complement Altern. Med.2019, 19, 168.
85. Yeh, S.-J.; Chen, S.-W.; Chen, B.-S. Investigation of the genome-wide genetic and epigenetic networks for drug discovery based on systems biology approaches in colorectal cancer. Front. Genet. 2020, 11, 117.
86. Zanzoni, A.; Montecchi-Palazzi, L.; Quondam, M.; Ausiello, G.; Helmer-Citterich, M.; Cesareni, G. MINT: A Molecular INTeraction database. FEBS Lett. 2002, 513, 135–140.
87. Stark, C.; Breitkreutz, B.-J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A general repository for interaction datasets. Nucleic Acids Res.2006, 34, D535–D539.
88. Orchard, S.; Ammari, M.; Aranda, B.; Breuza, L.; Briganti, L.; Broackes-Carter, F.; Campbell, N.H.; Chavali, G.; Chen, C.; Del-Toro, N. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res 2014, 42, D358–D363.
89. Salwinski, L.; Miller, C.S.; Smith, A.J.; Pettit, F.K.; Bowie, J.U.; Eisenberg, D.J. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004, 32, D449–D451.
90. Bovolenta, L.; Acencio, M.; Lemke, N. HTRIdb: An open-access database for experimentally verified human transcriptional regulation interactions. Nature 2012, 1-1.
91. Zheng, G.; Tu, K.; Yang, Q.; Xiong, Y.; Wei, C.; Xie, L.; Zhu, Y.; Li, Y. ITFP: An integrated platform of mammalian transcription factors. Bioinformatics 2008, 24, 2416–2417.
92. Wingender, E.; Chen, X.; Hehl, R.; Karas, H.; Liebich, I.; Matys, V.; Meinhardt, T.; Prüß, M.; Reuter, I.; Schacherer, F. TRANSFAC: An integrated system for gene expression regulation. Nucleic Acids Res. 2000, 28, 316–319.
93. Friard, O.; Re, A.; Taverna, D.; De Bortoli, M.; Corá, D. CircuitsDB: A database of mixed microRNA/transcription factor feed-forward regulatory circuits in human and mouse. BMC Bioinform. 2010, 11, 435.
94. Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. elife 2015, 4, e05005.
95. Li, J.-H.; Liu, S.; Zhou, H.; Qu, L.-H.; Yang, J.-H. starBase v2. 0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014, 42, D92–D97.
96. Chen, B.-S.; Wu, C.-C. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cell 2013, 2, 635–688.
97. Chang, S.; Wang, L.H.-C.; Chen, B.-S. Investigating core signaling pathways of hepatitis b virus pathogenesis for biomarkers identification and drug discovery via systems biology and deep learning method. Biomedicines 2020, 8, 320.
98. Kuhn, M.; von Mering, C.; Campillos, M.; Jensen, L.J.; Bork, P. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res. 2007, 36, D684–D688.
99. Chen, Y.Z. Bioinformatics and Drug Design Group at NUS. APBN 2006, 10, 1478–1479.
100. research, U.C. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res 2019, 47, D506–D515.
101. Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 2010, 39, D1035–D1041.
102. Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A. PubChem substance and compound databases. Nucleic Acids Res 2016, 44, D1202–D1213.
103. Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30.
104. Dong, J.; Yao, Z.-J.; Zhang, L.; Luo, F.; Lin, Q.; Lu, A.-P.; Chen, A.F.; Cao, D.-S. PyBioMed: A python library for various molecular representations of chemicals, proteins and DNAs and their interactions. J. Cheminformatics 2018, 10, 16.
105. Chang, S.; Chen, J.-Y.; Chuang, Y.-J.; Chen, B.-S. Systems Approach to Pathogenic Mechanism of Type 2 Diabetes and Drug Discovery Design Based on Deep Learning and Drug Design Specifications. Int. J. Mol. Sci.2020, 22, 166.
106. Hecht-Nielsen, R. Theory of the backpropagation neural network. In Neural Networks for Perception, Elsevier: Amsterdam, The Netherlands, Neural networks for perception 1992; pp. 65–93.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *