帳號:guest(18.188.92.227)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇子穎
作者(外文):Su, Tzu-Ying
論文名稱(中文):渦輪機模擬器驅動之風力同步磁阻發電機為主之直流微電網
論文名稱(外文):A TURBINE EMULATOR DRIVEN WIND SYNCHRONOUS RELUCTANCE GENERATOR BASED DC MICROGRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):陳盛基
陳偉倫
口試委員(外文):Chen, Seng-Chi
Chen, Woei-Luen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061602
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:125
中文關鍵詞:微電網風力發電機同步磁阻發電機風渦輪模擬器最大功率點追蹤損失最小化換相移位電池儲能系統電網至微電網/微電網至電網微電網至電動車/電動車至微電網無位置感測控制
外文關鍵詞:Microgridwind generatorSynRGwind turbine emulatorMPPTloss minimizationcommutation tuningBESSG2M/M2GM2V/V2Msensorless control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一同步磁阻發電機為主之微電網,發電機由永磁同步馬達驅動系統建構之風渦輪模擬器驅動。首先,建構標準永磁同步馬達驅動系統,由妥適設計之電力電路、感測機構、PWM 機構、電流及速度控制機構,獲得良好之驅控特性,用以建構渦輪模擬器,其可操作於速度及轉矩模式。於速度模式,其用為一般之定速渦輪模擬器;而於轉矩模式,可為忠實之風渦輪模擬器,產生忠實之轉矩-速度及功率-速度曲線,由模擬與實測結果證實之。同時,開發高頻注入無位置感測永磁同步馬達驅動系統,具婢美於標準驅動系統之操控性能,而能用以取代之。
接著,研製一實驗用同步磁阻發電機,藉由處理下列有關事務,獲得良好發電特性 (i) 同步磁阻發電機之主要參數估測,最關鍵之鐵損電阻、d-軸電感及q-軸電感均以逼近曲線表之,並用以從事操控;(ii) 構設外加激磁電壓源;(iii) 設計電流控制空間向量脈寬調制機構; (iv) 換相移位機制,使用逼近之發電機主要參數達成總損失之最小化;(v) 實測驗證所建同步磁阻發電機之良好發電性能。同時,應用擾動觀察法施行風渦輪機驅動同步磁阻發電機之最大功率點追控。
最後,建構同步磁阻發電機為主之微電網,其共同直流鏈電壓,由發電機後接之切換式整流器建立。蓄電池利用一妥善設計及控制之單臂雙向升-降直流對直流轉換器介接至共同直流鏈,由實測展示其正常之雙向操控。電網至微電網及微電網至電網之雙向操控藉由所建之三相變頻器為之,於電網至微電網模式,變頻器成為三相切換式整流器,電網對微電網提供能源支撐。而於微電網至電網模式,預設之實功及虛功可回送至電網。另外,本論文亦從事電動車對微電網操作,電動車電池可供能至微電網。
This thesis aims to develop a wind synchronous reluctance generator (SynRG) based DC microgrid. The generator is driven by wind turbine emulator (WTE) constructed by an inverter-fed permanent-magnet synchronous motor (PMSM). First, a standard PMSM drive is established. Good driving characteristics are obtained via properly designed power
circuit, sensing schemes, PWM scheme, current and speed control schemes. Then the developed standard PMSM drive is used to construct the turbine emulator, which can be operated in speed mode or torque mode. In speed mode, it can be used as a conventional fixed-speed turbine emulator. Let the PMSM drive be operated under torque mode, a faithful WTE is formed. The faithful torque-speed and power-speed curves are generated and verified through simulations and experiments. Additionally, a high-frequency injected (HFI) sensorless PMSM drive is developed. It possesses the comparable performances and can be used to replace the standard drive.
Next, a wind SynRG is designed and implemented. Good generating characteristics are obtained through the following key issues: (i) machine key parameter estimation, the most critical core loss resistance, d-axis and q-axis inductances are expressed in fitted forms and used for making operation control; (ii) equipment of external excitation voltage source; (iii) applying current-controlled space-vector pulse-width modulated (PWM) switching scheme; (iv) commutation shift to achieve loss minimization using the fitted machine parameters; and (v) the constructed SynRG is experimentally validated for its good power generation performance. Additionally, the maximum power point tracking (MPPT) control of the WTE driven SynRG is achieved using the perturb and observe (P&Q) method.
Finally, the wind SynRG based DC microgrid is constructed. The common DC-bus voltage is established by the SynRG followed SMR. The battery is interfaced to the common DC-bus through the properly designed and controlled one-leg bidirectional boost-buck DC/DC converter. The normal bidirectional charging/discharging operations are verified experimentally. To conduct the microgrid to grid bidirectional operations, a grid connected three-phase inverter is established. In grid-to-microgrid (G2M) mode, the inverter is operated as a switch-mode rectifier (SMR), letting the utility grid supply energy to support the microgrid. As to the M2G mode, the preset real and reactive powers can be successfully sent back to the utility grid. In addition, the vehicle-to-microgrid (V2M) operation is further conducted. The microgrid can also be supported energy by the vehicle
on-board battery.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES xii
LIST OF SYMBOLS xiii
LIST OF ABBREVIATIONS xxii
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 OVERVIEW OF MICROGRID AND WIND GENERATOR SYSTEM 6
2.1 Introduction 6
2.2 Microgrid System 6
2.3 The Features of Wind Turbine 9
2.4 Synchronous Motors 13
2.5 Synchronous Reluctance Generator 15
2.6 Switch-mode Rectifiers 22
2.7 Interface Converters 25
2.8 DSP TMS320F28335 28
2.9 Sensing and Interfacing Circuits 29
CHAPTER 3 PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVEN WIND TURBINE EMULATOR 31
3.1 Introduction 31
3.2 SPMSM Motor Drive 31
3.3 Governing Equations of PMSM 33
3.4 Parameter Estimation of the Employed PMSM 35
3.5 Some Key Issues of PMSM Drive 38
3.6 Controller Scheme 38
3.7 Experimental Evaluation for the Established SPMSM Drive 42
3.8 Position Sensorless Controlled SPMSM Drive 43
3.8.1 Overview of Some Position Sensorless control Methods 43
3.8.2 Sinusoidal Wave HFI Position sensorless SPMSM 45
3.8.3 Experimental Evaluation 50
3.9 Turbine Emulator 55
CHAPTER 4 THE DEVELOPED SYNCHRONOUS RELUCTANCE GENERATOR 62
4.1 Introduction 62
4.2 System Configuration 62
4.3 Three-phase Full-bridge SMR 62
4.4 Physical Modeling of SynRG with Fitted Parameters 66
4.5 Control Schemes 71
4.6 Experimental Results of the Established SynRG 76
4.7 Maximum Power Point Tracking Control of Wind SynRG 83
CHAPTER 5 THE DEVELOPED DC MICROGRID WITH GRIDCONNECTED AND ENERGY HARVESTING FUNCTIONS 89
5.1 Introduction 89
5.2 Battery Energy Storage System 90
5.2.1 Power Circuit 90
5.2.2 Control Scheme 92
5.2.3 Experimental Evaluation 98
5.3 Grid-Connected Bidirectional Inverter 104
5.4 Plugin Energy Harvesting Scheme 112
CHAPTER 6 CONCLUSIONS 114
REFERENCES 116
A. Microgrid
[1] X. Wu, J. Liu, Y. Men, B. Chen, and X. Lu, “Optimal energy storage system and smart switch placement in dynamic microgrids with applications to marine energy integration,” IEEE Trans. Sustain. Energy, vol. 14, no. 2, pp. 1205-1216, 2023.
[2] G. P. Holdmann, R. W. Wies, and J. B. Vandermeer, “Renewable energy integration in Alaska’s remote islanded microgrids: economic drivers, technical strategies, technological niche development, and policy implications,” in Proc. IEEE Proc., vol. 107, no. 9, pp. 1820-1837, 2019.
[3] Y. Shan, J. Hu, Z. Li, and J. M. Guerrero, “A model predictive control for renewable energy based AC microgrids without any PID regulators,” IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9122-9126, 2018.
[4] B. K. Bose, “Power electronics, smart grid, and renewable energy systems,” in Proc. IEEE Proc., vol. 105, no. 11, pp. 2011-2018, 2017.
[5] P. H. Kydd, J. R. Anstrom, P. D. Heitmann, K. J. Komara, and M. E. Crouse, “Vehiclesolar-grid integration: concept and construction,” IEEE Power Energy Technol. Syst. J., vol. 3, no. 3, pp. 81-88, 2016.
[6] G. K. Venayagamoorthy, R. K. Sharma, P. K. Gautam, and A. Ahmadi, “Dynamic energy management system for a smart microgrid,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1643-1656, 2016.
[7] J. G. de Matos, F. S. F. e Silva, and L. A. d. S. Ribeiro, “Power control in AC isolated microgrids with renewable energy sources and energy storage systems,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3490-3498, 2015.
[8] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[9] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[10] J. Y. Kim, J. H. jeon, S. K. Kim, C. Cho, J. H. Park, H. M. Kim, and K. Y. Nam, “Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3037-3048, 2010.

B. Generator
SynRG
[11] M. Ibrahim and P. Pillay, “The loss of self-excitation capability in stand-alone synchronous reluctance generators,” IEEE Trans. Ind. Appl., vol. 54, no. 6, pp. 6290-6298, 2018.
[12] F. Zhang, H. Wang, G. Jia, D. Ma, and M. G. Jovanovic, “Effects of design parameters on performance of brushless electrically excited synchronous reluctance generator,” IEEE Trans. Ind. Electron., vol. 65, no. 11, pp. 9179-9189, 2018.
[13] S. S. Maroufian and P. Pillay, “Self-excitation criteria of the synchronous reluctance generator in stand-alone mode of operation,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1245- 1253, 2018.
[14] C. M. Spargo, B. C. Mecrow, J. D. Widmer, and C. Morton, “Application of fractional-slot concentrated windings to synchronous reluctance machines,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1446-1455, 2015.
[15] Y. H. A. Rahim, J. E. Fletcher, and N. E. A. M. Hassanain, “Performance analysis of salient-pole self-excited reluctance generators using a simplified model,” IET Renewable Power Generation, vol. 4, no. 3, pp. 253-260, 2010.
[16] S. Guha and N. C. Kar, “Saturation modeling and stability analysis of synchronous reluctance generator,” IEEE Trans. Energy Convers., vol. 23, no. 3, pp. 814-823, 2008.
[17] J. -D. Park, C. Kalev, and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3038-3046, 2008.
[18] I. Boldea, L. Tutelea, and C. I. Pitic, “PM-assisted reluctance synchronous motor/generator (PM-RSM) for mild hybrid vehicles: electromagnetic design,” IEEE Trans. Ind. Appl., vol.40, no. 2, pp. 492-498, 2004.
PMSG
[19] Y. J. Oh, J. S. Park, B. J. Hyon, and J. Lee, “Novel control strategy of wave energy converter using linear permanent magnet synchronous generator,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1-5, 2018.
[20] H. Fang and D. Wang, “A novel design method of permanent magnet synchronous generator from perspective of permanent magnet material saving,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 48-54, 2017.
[21] M. Heydari, A. Y. Varjani, M. Mohamadian, and H. Zahedi, “A novel variable-speed wind energy system using permanent-magnet synchronous generator and nine switch AC/AC converter,” in Proc. IEEE PEDSTC., pp. 5-9, 2010.
[22] S. Grabic, N. Celanovic, and V. A. Katic, “Permanent magnet synchronous generator cascade for wind turbine application,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1136-1142, 2008.
IG
[23] K. A. Chinmaya and G. K. Singh, “Performance evaluation of multiphase induction generator in stand-alone and grid-connected wind energy conversion system,” IET Renewable Power Generation, vol. 12, no. 7, pp. 823-831, 2018.
[24] F. Bizzarri, A. Brambilla, and F. Milano, “Simplified model to study the induction generator effect of the subsynchronous resonance phenomenon,” IEEE Trans. Energy Convers., vol. 33, no. 2, pp. 889-892, 2018.
[25] L. A. C. Lopes and R. G. Almeida, “Wind-driven self-excited induction generator with voltage and frequency regulated by a reduced-rating voltage source inverter,” IEEE Trans. Energy Convers., vol. 21, no. 2, pp. 297-304, 2006.
SRG
[26] T. A. S. Barros, P. J. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, 2017.
[27] V. P. Vujičić and M. P. Ćalasan, “Simple sensorless control for high-speed operation of switched reluctance generator,” IEEE Trans. Energy Convers., vol. 31, no. 4, pp. 1325-1335, 2016.
[28] S. Narla, Y. Sozer, and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1452-1459, 2012.
[29] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, 2005.

C. Wind Turbine Emulator
[30] R. Nair and G. Narayanan, “Emulation of wind turbine system using vector controlled induction motor drive,” IEEE Trans. Ind. Appl., vol. 56, no. 4, pp. 4124-4133, 2020.
[31] M. Moness and A. M. Moustafa, “Real-time switched model predictive control for a cyberphysical wind turbine emulator,” IEEE Trans. Ind. Informat., vol. 16, no. 6, pp. 3807-3817, 2020.
[32] E. Mohammadi, R. Fadaeinedjad, H. R. Naji, and G. Moschopoulos, “Investigation of horizontal and vertical wind shear effects using a wind turbine emulator,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1206-1216, 2019.
[33] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017.

D. Maximum Power Point Tracking
[34] P. Huynh, S. Tungare, and A. Banerjee, “Maximum power point tracking for wind turbine using integrated generator-rectifier systems,” IEEE Trans. Power Electron., vol. 36, no. 1,
pp. 504-512, 2021.
[35] Z. Chen, M. Yin, Y. Zou, K. Meng, and Z. Dong, “Maximum wind energy extraction for variable speed wind turbines with slow dynamic behavior,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3321-3322, 2017.
[36] J. C. Y. Hui, A. Bakhshai, and P. K. Jain, “An energy management scheme with power limit capability and an adaptive maximum power point tracking for small standalone PMSG wind energy systems,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4861-4875, 2016.
[37] J. Hussain and M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 697-705, 2016.
[38] C. Huang, F. Li, and Z. Jin, “Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics,” IEEE Trans. Ind. Electron., vol. 62,
no. 4, pp. 2530-2539, 2015.
[39] C. Wei, Z. Zhang, W. Qiao, and L. Qu, “Reinforcement-learning-based intelligent maximum power point tracking control for wind energy conversion systems,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6360-6370, 2015.
[40] Y. Zou, M. E. Elbuluk, and Y. Sozer, “Stability analysis of maximum power point tracking (MPPT) method in wind power systems,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1129-1136, 2013.

E. PMSM/SynRM/SynRG
Equivalent Circuit Modeling and Parameters Estimation
[41] H. Guo, X. He, J. Xu, W. Tian, G. Sun, L. Ju, and D. Li, “Design of an aviation dual-threephase high-power high-speed permanent magnet assisted synchronous reluctance startergenerator
with antishort-circuit ability,” IEEE Trans. Power Electron., vol. 37, no. 10, pp. 12619-12635, 2022.
[42] J. G. Lee, D. K. Lim, and H. K. Jung, “Analysis and design of interior permanent magnet synchronous motor using a sequential-stage magnetic equivalent circuit,” IEEE Trans. Magn., vol. 55, no. 10, pp. 1-4, 2019.
[43] H. Fülop, M. M. Rădulescu, and M. Drancă, “Design analysis of ferrite magnet-assisted synchronous reluctance micro-wind generator,” in Proc. MPS, 2017.
[44] B. Sheikh-Ghalavand, S. Vaez-Zadeh, and A. H. Isfahani, “An improved magnetic equivalent circuit model for iron-core linear permanent-magnet synchronous motors,” IEEE Trans. Magn., vol. 46, no. 1, pp. 112-120, 2010.
[45] J. B. Im, W. Kim, K. Kim, C. S. Jin, J. H. Choi, and J. Lee, “Inductance calculation method of synchronous reluctance motor including iron loss and cross magnetic saturation,” IEEE Trans. Magn., vol. 45, no. 6, pp. 2803-2806, 2009.
[46] P. Y. P. Wung and H. B. Puttgen, “Synchronous reluctance motor operating point dependent parameter determination,” IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 358-363, 1992.
Current Control
[47] C. K. Lin, J. t. Yu, Y. S. Lai, and H. C. Yu, “Improved model-free predictive current control for synchronous reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp.
3942-3953, 2016.
[48] M. Hinkkanen, H. Asad Ali Awan, Z. Qu, T. Tuovinen, and F. Briz, “Current control for synchronous motor drives: direct discrete-time pole-placement design,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1530-1541, 2016.
[49] S. Morimoto, Y. Takeda, and T. Hirasa, “Current phase control methods for permanent magnet synchronous motors,” IEEE Trans. Power Electron., vol. 5, no. 2, pp. 133-139, 1990.
[50] K. H. Kim, C. Baik, G. W. Moon, and M. J. Youn, “A current control for a permanent magnet synchronous motor with a simple disturbance estimation scheme,” IEEE Trans. Control Syst. Technol., vol. 7, no. 5, pp. 630-633, 1999.
Speed Control
[51] J. Xu, B. Zhang, H. Fang, and H. Guo, “Guaranteeing the fault transient performance of aerospace multiphase permanent magnet motor system: an adaptive robust speed control approach,” CES Trans. Electric. Mach. Syst., vol. 4, no. 2, pp. 114-122, 2020.
[52] E. Daryabeigi, A. Mirzaei, H. Abootorabi Zarchi, and S. Vaez-Zadeh, “Enhanced emotional and speed deviation control of synchronous reluctance motor drives,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 604-612, 2019.
[53] Y. C. Chang, C. H. Chen, Z. C. Zhu, and Y. W. Huang, “Speed control of the surface-mounted permanent-magnet synchronous motor based on Takagi-Sugeno fuzzy models,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6504-6510, 2016.
Direct Torque Control
[54] X. Zhang, G. H. B. Foo, D. M. Vilathgamuwa, and D. L. Maskell, “An improved robust field-weakeaning algorithm for direct-torque-controlled synchronous-reluctance-motor drives,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3255-3264, 2015.
[55] H. D. Lee, S. J. Kang, and S. K. Sul, “Efficiency-optimized direct torque control of synchronous reluctance motor using feedback linearization,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 192-198, 1999.
[56] S. J. Kang and S. K. Sul, “Highly dynamic torque control of synchronous reluctance motor,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 793-798, 1998.

F. Position Sensorless Control
Observe based methods
[57] H. Lee and J. Lee, “Design of iterative sliding mode observer for sensorless PMSM control,” IEEE Trans. Control Syst. Technol., vol. 21, no. 4, pp. 1394-1399, 2013.
[58] J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, and A. Astolfi, “Sensorless control of surface-mount permanent-magnet synchronous motors based on a nonlinear observer,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 290-297, 2010.
[59] A. Piippo, M. Hinkkanen, and J. Luomi, “Analysis of an adaptive observer for sensorless control of interior permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 570-576, 2008.
[60] S. Y. Kim and I. J. Ha, “A new observer design method for HF signal injection sensorless control of IPMSMs,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2525-2529, 2008.
Back-EMF methods
[61] Y. Huang, M. Zhao, J. Zhang, and M. Lu, “The hall sensors fault-tolerant for PMSM based on switching sensorless control with PI parameters optimization,” IEEE Access, vol. 10, pp. 114048-114059, 2022.
[62] C. Li, Q. Ni, H. Zhan, B. Li, G. Wang, and D. Xu, “Maximum torque per ampere sensorless control of SynRM based on mixed signal injection and extended back-EMF,” in Proc. ICEMS, 2021.
[63] F. P. Scalcon, C. J. Volpato, T. Lazzari, T. S. Gabbi, R. P. Vieira, and H. A. Gründling, “Sensorless control of a synrm drive based on a Luenberger observer with an extended-EMF model,” in Proc. IEEE IECON, Lisbon, Portugal, 2019.
[64] H. Yang, Y. Zhang, and N. Zhang, “Two high performance position estimation schemes based on sliding-mode observer for sensorless SPMSM drives,” IEEE IPEMC-ECCE, 2016.
[65] M. N. Uddin, M. M. Rashid, M. Rubaiyat, B. Hossain, S. M. Salam, and N. A. Nithe, “Comparison of position sensorless control based back-EMF estimators in PMSM,” in Proc. ICCIT, 2015.
[66] M. Seilmeier and B. Piepenbreier, “Sensorless control of PMSM for the whole speed range using two-degree-of-freedom current control and HF test current injection for low-speed range,” IEEE Trans Power Electron, vol. 30, no. 8, pp. 4394-4403, 2015.
[67] J. M. Liu and Z. Q. Zhu, “Improved sensorless control of permanent-magnet synchronous machine based on third-harmonic back EMF,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1861-1870, 2014.
[68] Z. Wang, K. Lu and F. Blaabjerg, “A simple startup strategy based on current regulation for back-EMF based sensorless Control of PMSM,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3817-3825, 2012.
[69] F. Genduso, R. Miceli, C. Rando, and G. R. Galluzzo, “Back-EMF sensorless control algorithm for high-dynamic performance PMSM,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 2092-2100, 2010.
Methods based on the rotor saliency
[70] D. D. Reigosa, D. Fernandez, H. Yoshida, T. Kato, and F. Briz, “Permanent-magnet temperature estimation in PMSMs using pulsating high-frequency current injection,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3159-3168, 2015.
[71] O. A. Mohammed, A. A. Khan, A. M. El-Tallawy, A. Nejadpak, and M. J. Roberts, “A wavelet filtering scheme for noise and vibration reduction in high-frequency signal injection-based sensorless control of PMSM at low speed,” IEEE Trans. Energy Convers., vol. 27, no. 2, pp. 250-260, 2012.
[72] F. Cupertino, G. Pellegrino, P. Giangrande, and L. Salvatore, “Sensorless position control of permanent-magnet motors with pulsating current injection and compensation of motor end effects,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1371-1379, 2011.
[73] K. Lu, M. Vetuschi, P. O. Rasmussen, and A. E. Ritchie, “Determination of high-frequency d- and q-axis inductances for surface-mounted permanent-magnet synchronous machines,” IEEE Trans. Instrum. Meas., vol. 59, no. 9, pp. 2376-2382, 2010.
[74] C. H. Choi and J. K. Seok, “Pulsating signal injection-based axis switching sensorless control of surface-mounted permanent-magnet motors for minimal zero-current clamping effects,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1741-1748, 2008.
[75] J. H. Jang, S. K. Sul, J. I. Ha, K. Ide, and M. Sawamura, “Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1031-1039, 2003.

G. Efficiency Optimization
Maximum Torque Per Ampere
[76] L. Ortombina, F. Tinazzi, and M. Zigliotto, “Adaptive maximum torque per ampere control of synchronous reluctance motors by radial basis function networks,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp. 2531-2539, 2019.
[77] T. Inoue, Y. Inoue, S. Morimoto, and M. Sanada, “Maximum torque per ampere control of a direct torque-controlled PMSM in a stator flux linkage synchronous frame,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 2360-2367, 2016.
[78] T. Inoue, Y. Inoue, S. Morimoto, and M. Sanada, “Mathematical model for MTPA control of permanent-magnet synchronous motor in stator flux linkage synchronous frame,” IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3620-3628, 2015.
[79] T. Sun, J. Wang, and X. Chen, “Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5036-5045, 2015.
[80] R. Antonello, M. Carraro, and M. Zigliotto, “Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 5086-5093, 2014.
[81] P. Niazi, H. A. Toliyat, and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-Assisted SynRM for traction applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538-1545, 2007.
Loss minimization control
[82] Z. Qu and M. Hinkkanen, “Loss-minimizing control of synchronous reluctance motors - a review,” in Proc. IEEE ICIT, pp. 350-355, 2013.
[83] S. Yamamoto, H. Hirahara, J. B. Adawey, T. Ara, and K. Matsuse, “Maximum efficiency drives of synchronous reluctance motors by a novel loss minimization controller with inductance estimator,” IEEE Trans. Ind. Appl., vol. 49, no. 6, pp. 2543-2551, 2013.
[84] H. F. Hofmann, S. R. Sanders, and A. E. Antably, “Stator-flux-oriented vector control of synchronous reluctance machines with maximized efficiency,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1066-1072, 2004.

H. Three-phase SMRs
[85] S. Gangavarapu, A. K. Rathore, and V. Khadkikar, “High-efficiency three-phase single-stage isolated flyback-based PFC converter with a novel clamping circuit,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 718-729, 2020.
[86] A. Mallik, W. Ding, C. Shi, and A. Khaligh, “Input voltage sensorless duty compensation control for a three-phase boost PFC converter,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1527-1537, 2017.
[87] M. Narimani and G. Moschopoulos, “A new interleaved three-phase single-stage PFC AC-DC converter,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 648-654, 2014.
[88] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems—part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.

I. Energy Storage System
[89] A. M. Abomazid, N. A. El-Taweel, and H. E. Z. Farag, “Optimal energy management of hydrogen energy facility using integrated battery energy storage and solar photovoltaic systems,” IEEE Trans. Sustain. Energy, vol. 13, no. 3, pp. 1457-1468, 2022.
[90] W. Huang, X. Zhang, K. Li, N. Zhang, G. Strbac, and C. Kang, “Resilience oriented planning of urban multi-energy systems with generalized energy storage sources,” IEEE Trans. Power Syst., vol. 37, no. 4, pp. 2906-2918, 2022.
[91] S. Fang, Z. Lv, and G. Chao, “Methods of increasing the energy storage density of superconducting flywheel,” IEEE Trans. Appl. Supercond., vol. 31, no. 8, pp. 1-5, 2021.
[92] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” Proc. IEEE Proc. IRE, vol.
102, no. 6, pp. 1014-1030, 2014.
[93] J. Lee, S. Jeong, Y. H. Han, and B. J. Park, “Concept of Cold Energy Storage for Superconducting Flywheel Energy Storage System,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 2221-2224, 2011.
[94] H. S. Choi, H. M. Park, J. H. Lee, Y. H. Han, and T. H. Sung, “The optimum design for magnetic flux distribution of a superconducting flywheel energy storage system,” IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 2116-2119, 2009.
[95] M. S. Lu, C. L. Chang, W. J. Lee, and L. Wang, “Combining the wind power generation system with energy storage equipment,” IEEE Trans. Ind. Appl., vol. 45, no. 6, pp. 2109-2115, 2009.
[96] J. P. Lee, B. J. Park, Y. H. Han, S. Y. Jung, and T. H. Sung, “Energy loss by drag force of superconductor flywheel energy storage system with permanent magnet rotor,” IEEE Trans. Magn., vol. 44, no. 11, pp. 4397-4400, 2008.
[97] T. Kinjo, T. Senjyu, N. Urasaki, and H. Fujita, “Output levelling of renewable energy by electric double-layer capacitor applied for energy storage system,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 221-227, 2006.
[98] D. W. Swett and J. G. Blanche, “Flywheel charging module for energy storage used in electromagnetic aircraft launch system,” IEEE Trans. Magn., vol. 41, no. 1, pp. 525-528, 2005.
[99] Bagen and R. Billinton, “Incorporating well-being considerations in generating systems using energy storage,” IEEE Trans. Energy Convers., vol. 20, no. 1, pp. 225-230, 2005.
[100] C. F. Lu, C. C. Liu, and C. J. Wu, “Effect of battery energy storage system on load frequency control considering governor deadband and generation rate constraint,” IEEE Trans. Energy Convers., vol. 10, no. 3, pp. 555-561, 1995.

J. DC/DC Interface Converter
[101] D. Zhou, J. Wang, N. Hou, Y. Li, and J. Zou, “Dual-port inverters with internal DC-DC conversion for adjustable DC-link voltage operation of electric vehicles,” IEEE Trans.
Power Electron., vol. 36, no. 6, pp. 6917-6928, 2021.
[102] O. Cornea, G. -D. Andreescu, N. Muntean, and D. Hulea, “Bidirectional power flow control in a DC microgrid through a switched-capacitor cell hybrid DC-DC converter,” IEEE Trans.
[103] M. Lakshmi and S. Hemamalini, “Nonisolated high gain DC-DC converter for DC microgrids,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1205-1212, 2018.
[104] F. Xue, R. Yu and A. Q. Huang, “A 98.3% efficient GaN isolated bidirectional DC-DC converter for DC microgrid energy storage system applications,” IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 9094-9103, 2017.
[105] Z. Li, S. Hoshina, N. Satake, and M. Nogi, “Development of DC/DC converter for battery energy storage supporting railway DC feeder systems,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4218-4224, 2016.
[106] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, “A novel high step-up DC-DC converter for a microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127-1136, 2011.
[107] M. B. Camara, H. Gualous, F. Gustin, A. Berthon, and B. Dakyo, “DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—polynomial control strategy,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 587-597, 2010.
[108] Chung-Wook Roh, Seung-Hoon Han, Sung-Soo Hong, Sug-Chin Sakong, and Myung-Joong Youn, “Dual-coupled inductor-fed DC/DC converter for battery drive applications,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 577-584, 2004.

K. PWM Inverters
[109] A. Elrayyah, “Control algorithms to establish hybrid AC/DC distribution systems using conventional six-switch inverters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 4, pp. 4470-4481, 2021.
[110] M. Farhadi and M. Abapour, “Three-switch three-phase inverter with improved DC voltage utilization,” IEEE Trans. Ind. Electron., vol. 66, no. 1, pp. 14-24, 2019.
[111] M. Heydari, A. Fatemi, and A. Yazdian Varjani, “A reduced switch count three-phase AC/AC converter with six power switches: Modeling, analysis, and control,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 4, pp. 1720-1738, 2017.
[112] A. Fatemi, M. Azizi, M. Mohamadian, A. Yazdian Varjani, and M. Shahparasti, “Singlephase dual-output inverters with three-switch legs,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1769-1779, 2013.
[113] B. El Badsi, B. Bouzidi, and A. Masmoudi, “DTC scheme for a four-switch inverter-fed induction motor emulating the six-switch inverter operation,” IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3528-3538, 2013.
[114] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Evaluation of current reference generation methods for a three-phase inverter interfacing renewable energy sources to generalized micro-grid,” in Proc. IEEE PEDS, pp. 316-321, 2011.
[115] B. Sahan, S. V. Araujo, C. Noding, and P. Zacharias, “Comparative evaluation of three phase current source inverters for grid interfacing of distributed and renewable energy systems,”
IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[116] X. Guo, R. He, J. Jian, Z. Lu, X. Sun, and J. M. Guerrero, “Leakage current elimination of four-leg inverter for transformerless three-phase PV systems,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1841-1846, 2016.
[117] A. Boglietti, R. Bojoi, A. Cavagnino, and A. Tenconi, “Efficiency analysis of PWM inverter fed three-phase and dual three-phase high frequency induction machines for low/medium power applications,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2015-2023, 2008.
[118] M. N. Uddin, T. S. Radwan, and M. A. Rahman, “Fuzzy-logic-controller-based cost-effective four-switch three-phase inverter-fed IPM synchronous motor drive system,” IEEE Trans. Ind. Appl., vol. 42, no. 1, pp. 21-30, 2006.
[119] Y. P. Li, F. C. Lee, and D. Boroyevich, “A simplified three-phase zero-current-transition inverter with three auxiliary switches,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 802-813, 2003.
[120] S. Halasz, B. T. Huu, and A. Zakharov, “Two-phase modulation technique for three-level inverter-fed AC drives,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1200-1211, 2000.
[121] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple and analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *