帳號:guest(18.118.186.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):呂依凡
作者(外文):Lu, Yi-Fan
論文名稱(中文):利用可程式化邏輯閘陣列實作之量子密鑰分發實體通道介面
論文名稱(外文):The Physical Channel Interface for Quantum Key Distribution Using FPGA
指導教授(中文):馬席彬
指導教授(外文):Ma, Hsi-Pin
口試委員(中文):褚志崧
黃元豪
蔡佩芸
口試委員(外文):Chuu, Chih-Sung
Huang, Yuan-Hao
Tsai, Pei-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061562
出版年(民國):113
畢業學年度:112
語文別:英文
論文頁數:68
中文關鍵詞:量子密鑰分發同調單向協定量子通道介面十億位元乙太網路可程式化邏輯閘陣列
外文關鍵詞:quantum key distributioncoherent one-way protocolquantum channel interfaceGigabit Ethernetfield programmable gate array
相關次數:
  • 推薦推薦:0
  • 點閱點閱:187
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在量子系統成長的威脅下,目前的加密系統有望在未來受到威脅。BB84協議於西元1984年提出,旨在建立一種新的加密系統,即量子金鑰分發(QKD)。該協議利用量子物理的獨特特性實現了信息理論安全,自1984年起,各方研究不斷推進金鑰生成速率。關於QKD系統的研究始於2012年。在先前的研究中,相干單向(COW)協議QKD具有更高的金鑰生成率,此外,由於後處理模組需要大量的計算和內存資源,如何實現與之整合在同一個系統中的封包處理模組成為了一個問題。

在本論文中,實現了一個用於同調單向協議的可編程物理通道接口。量子通道和經典通道都得到了實現。由於量子位元是通過相位編碼的,因此本文中的可編程時鐘頻率確定了量子位元的發送頻率。量子位元脈衝的發送頻率為312.5 MHz。此外,以在古典通道的1G以太網下進行傳輸的傳輸控制協議,以確保兩側後處理信息傳輸的可靠性,後處理模組到封包處理模組的訊息讀取速率達到3 Gbps。
Under the threat posed by the growth of quantum systems, current cryptographic systems are expected to be vulnerable in the future. The BB84 protocol was introduced in 1984 to establish a new cryptographic system, quantum key distribution (QKD). This protocol leverages the unique characteristics of quantum physics to achieve information-theoretic security, ensuring a continuously improved key generation rate. The research of system level integration of QKD begins from 2012. From those previous works, coherent one-way (COW) protocol QKD has higher key generation rate. Additionally, the integration of packet processing module is a problem. Since the huge computing and memory resource required by post-processing module.

In this thesis, a programmable physical channel interface for the COW protocol is implemented. Both the quantum channel and the classical channel are implemented. As the quantum bit (qubit) is encoded by phase, the repetition frequency of the qubit is determined by the programmable clock frequency in this work. The repetition frequency of the qubit pulse is 312.5 MHz. Additionally, the transmission control protocol (TCP) is implemented for transmission under 1G Ethernet in the classical channel. The message access rate from post-processing module to the packet processing module achieves 3 Gbps. TCP is employed to ensure the reliability of post-processing information transmission between the two sides.
摘要 i
Abstract iii
誌謝 v
1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Background Knowledge and Literature Survey 5
2.1 The Needs for QKD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 QKD Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Classical Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Comments on Related Works . . . . . . . . . . . . . . . . . . . . . . . 14
3 A Programmable Interface Structure for QKD 21
3.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Quantum Channel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Overview of Quantum Channel Interface . . . . . . . . . . . . . . . . 23
3.2.2 Structure of Pulse Generator . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Classical Channel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.1 Overview of Classical Channel . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Structure of networkCentCtrl . . . . . . . . . . . . . . . . . . . . . . . 38
4 Implementation Results 49
4.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.1 Quantum Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 Classical Channel of Transmitting Path . . . . . . . . . . . . . . . . . 50
4.1.3 Classical Channel of Receiving Path . . . . . . . . . . . . . . . . . . . 55
4.1.4 Summary of Delay in Classical Channel . . . . . . . . . . . . . . . . . 56
4.2 Utilization of Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.1 Quantum Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.2 Classical Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
vii
5 Conclusion and Future Work 65
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
References 67
[1] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev,The security of practical quantum key distribution,” Reviews of modern physics, vol. 81, no. 3, p. 1301, 2009.
[2] N. Venkatachalam, F. P. Shingala, C. Selvagangai, S. Dillibabu, P. Chandravanshi, R. P. Singh, et al., “Scalable QKD post processing system with reconfigurable hardware accelerator,” IEEE Transactions on Quantum Engineering, 2023.
[3] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple one-way quantum key distribution,” Applied Physics Letters, vol. 87, no. 19, 2005.
[4] R.-Q. Gao, Y.-M. Xie, J. Gu, W.-B. Liu, C.-X. Weng, B.-H. Li, H.-L. Yin, and Z.-B. Chen, “Simple security proof of coherent-one-way quantum key distribution,” Optics Express, vol. 30, no. 13, pp. 23783–23795, 2022.
[5] P. Gaudry, “Integer factorization and discrete logarithm problems,” Les cours du CIRM,
vol. 4, no. 1, pp. 1–20, 2014.
[6] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings 35th annual symposium on foundations of computer science, pp. 124–134, Ieee, 1994.
[7] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Reviews of modern physics, vol. 74, no. 1, p. 145, 2002.
[8] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. A. Perlner, and D. SmithTone, Report on post-quantum cryptography, vol. 12. US Department of Commerce, National Institute of Standards and Technology …, 2016.
[9] C. E. Shannon and W. Weaver, The mathematical theory of communication, by CE Shannon (and recent contributions to the mathematical theory of communication), W. Weaver. University of illinois Press, 1949.
[10] R. Alléaume, C. Branciard, J. Bouda, T. Debuisschert, M. Dianati, N. Gisin, M. Godfrey, P. Grangier, T. Länger, N. Lütkenhaus, et al., “Using quantum key distribution for cryptographic purposes: a survey,” Theoretical Computer Science, vol. 560, pp. 62–81, 2014.
[11] Y. Cao, Y. Zhao, Q. Wang, J. Zhang, S. X. Ng, and L. Hanzo, “The evolution of quantum key distribution networks: On the road to the qinternet,” IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 839–894, 2022.
[12] N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, “Towards practical and fast quantum cryptography,” arXiv preprint quant-ph/0411022, 2004.
[13] K. R. Kurose, “Computer networking: A top-down approach, 7th edition,” Kurose, Keith W. Ross.—, p. 601, 2017.
[14] H.-F. Zhang, J. Wang, K. Cui, C.-L. Luo, S.-Z. Lin, L. Zhou, H. Liang, T.-Y. Chen, K. Chen, and J.-W. Pan, “A real-time QKD system based on FPGA,” Journal of Lightwave Technology, vol. 30, no. 20, pp. 3226–3234, 2012.
[15] A. Tanaka, M. Fujiwara, K.-i. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki, et al., “High-speed quantum key distribution system for 1-Mbps real-time key generation,” IEEE Journal of Quantum Electronics, vol. 48, no. 4, pp. 542–550, 2012.
[16] N. Walenta, A. Burg, D. Caselunghe, J. Constantin, N. Gisin, O. Guinnard, R. Houlmann, P. Junod, B. Korzh, N. Kulesza, et al., “A fast and versatile QKD system with hardware key distillation and wavelength multiplexing,” arXiv preprint arXiv:1309.2583, 2013.
[17] J. Constantin, R. Houlmann, N. Preyss, N. Walenta, H. Zbinden, P. Junod, and A. Burg, “An FPGA-based 4 Mbps secret key distillation engine for quantum key distribution systems,” Journal of Signal Processing Systems, vol. 86, pp. 1–15, 2017.
[18] A. Stanco, F. B. Santagiustina, L. Calderaro, M. Avesani, T. Bertapelle, D. Dequal, G. Vallone, and P. Villoresi, “Versatile and concurrent FPGA-based architecture for practical quantum communication systems,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–8, 2022.
[19] A. I. Nurhadi and N. R. Syambas, “Quantum key distribution (QKD) protocols: A survey,” in 2018 4th International Conference on Wireless and Telematics (ICWT), pp. 1–5, IEEE, 2018.
[20] Y.-C. Kao, S.-H. Huang, C.-H. Chang, C.-H. Wu, S.-H. Chu, J. Jiang, A.-C. Zhang, S.-Y. Huang, J.-H. Yan, K.-M. Feng, et al., “Field test of quantum key distribution with high key creation efficiency,” Optics Express, vol. 31, no. 19, pp. 30239–30247, 2023.
[21] H.-K. Lo, X. Ma, and K. Chen, “Decoy state quantum key distribution,” Physical review letters, vol. 94, no. 23, p. 230504, 2005.
[22] G. Campobello, G. Patane, and M. Russo, “Parallel crc realization,” IEEE Transactions on Computers, vol. 52, no. 10, pp. 1312–1319, 2003
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *