|
[1] H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” science, vol. 283, no. 5410, pp. 2050–2056, 1999. [2] S. Barz, E. Kashefi, A. Broadbent, J. F. Fitzsimons, A. Zeilinger, and P. Walther, “Demonstration of blind quantum computing,” science, vol. 335, no. 6066, pp. 303–308, 2012. [3] R. A. Qamar, M. A. Maarof, and S. Ibrahim, “First tour to quantum cryptography,” International Journal of Research and Reviews in Computer Science, vol. 2, no. 2, p. 326, 2011. [4] Q. Li, S. Ma, H. Mao, and L. Meng, “An FPGA-based communication scheme of classical channel in high-speed QKD system,” in 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2014, pp. 227–230 [5] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, and J.-W. Pan, “Secure quantum key distribution with realistic devices,” Reviews of Modern Physics, vol. 92, no. 2, p. 025002, 2020. [6] S.-K. Liao, W.-Q. Cai, W.-Y. Liu, L. Zhang, Y. Li, J.-G. Ren, J. Yin, Q. Shen, Y. Cao, Z.-P. Li et al., “Satellite-to-ground quantum key distribution,” Nature, vol. 549, no. 7670, pp. 43–47, 2017. [7] Q. Li, Z. Lin, D. Le, and H. Liu, “An FPGA-based design of efficient QKD sifting module,” in 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. IEEE, 2014, pp. 219–222. [8] H.-F. Zhang, J. Wang, K. Cui, C.-L. Luo, S.-Z. Lin, L. Zhou, H. Liang, T.-Y. Chen, K. Chen, and J.-W. Pan, “A real-time QKD system based on FPGA,” Journal of Lightwave Technology, vol. 30, no. 20, pp. 3226–3234, 2012. [9] A. Tanaka, M. Fujiwara, K.-i. Yoshino, S. Takahashi, Y. Nambu, A. Tomita, S. Miki, T. Yamashita, Z. Wang, M. Sasaki et al., “High-speed quantum key distribution system for 1-Mbps real-time key generation,” IEEE Journal of Quantum Electronics, vol. 48, no. 4, pp. 542–550, 2012. [10] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical computer science, vol. 560, pp. 7–11, 2014. [11] D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, “Fast and simple oneway quantum key distribution,” Applied Physics Letters, vol. 87, no. 19, 2005. [12] D. Stucki, S. Fasel, N. Gisin, Y. Thoma, and H. Zbinden, “Coherent one-way quantum key distribution,” in Photon Counting Applications, Quantum Optics, and Quantum Cryptography, vol. 6583. SPIE, 2007, pp. 194–197 [13] J. Constantin, R. Houlmann, N. Preyss, N. Walenta, H. Zbinden, P. Junod, and A. Burg, “An FPGA-based 4 Mbps secret key distillation engine for quantum key distribution systems,” Journal of Signal Processing Systems, vol. 86, pp. 1–15, 2017. [14] J. Martinez-Mateo, C. Pacher, M. Peev, A. Ciurana, and V. Martin, “Demystifying the information reconciliation protocol cascade,” arXiv preprint arXiv:1407.3257, 2014. [15] H. Yan, T. Ren, X. Peng, X. Lin, W. Jiang, T. Liu, and H. Guo, “Information reconciliation protocol in quantum key distribution system,” in 2008 Fourth International Conference on Natural Computation, vol. 3. IEEE, 2008, pp. 637–641. [16] H. Krawczyk, “LFSR-based hashing and authentication,” in Annual International Cryptology Conference. Springer, 1994, pp. 129–139. [17] A. Tanaka, W. Maeda, S. Takahashi, A. Tajima, and A. Tomita, “Ensuring quality of shared keys through quantum key distribution for practical application,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 6, pp. 1622–1629, 2009. [18] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid, E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al., Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology, 2010. [19] E. O. Kiktenko, A. O. Malyshev, M. A. Gavreev, A. A. Bozhedarov, N. O. Pozhar, M. N. Anufriev, and A. K. Fedorov, “Lightweight authentication for quantum key distribution,” IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6354–6368, 2020.
|