帳號:guest(3.147.104.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉皓庭
作者(外文):Liu, Hao-Ting
論文名稱(中文):考量控制飽和下的用於自駕車之強健性𝐻∞錯誤容忍基於觀測器的PID路徑追蹤控制
論文名稱(外文):Robust H∞ Fault-tolerant Observer-based PID Path Tracking Control of Autonomous Ground Vehicle with Control Saturation
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):黃志良
吳德豐
吳常熙
口試委員(外文):Hwang, Chih-Lyang
Wu, Ter-Feng
Wu, Chang-Hsi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061533
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:31
中文關鍵詞:自駕車致動器/感測器攻擊信號強健性基於觀測器追蹤控制線性矩陣不等式平滑信號模型錯誤容忍控制PID控制H_∞追蹤控制
外文關鍵詞:AGVactuator/sensor attack signalsrobust observer-based tracking controlrobust observer-based tracking controllinear matrix inequality(LMI)smoothed signal modelfault-tolerant controlPID controlH_∞ tracking control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這個研究中,我們提出了一種強健性H_∞基於觀測器的PID路徑追蹤控制設計,用於受到外部干擾、致動器/感測器錯誤信號和控制飽和效應的自主地面車輛(AGV)。為了保護AGV系統免受致動器/感測器錯誤信號的損害,我們引入了兩個平滑信號模型。這些平滑信號模型被用於精確估計這些錯誤信號,並作為擴充系統遷入到AGV的動態系統中。接著,估測的系統動態與錯誤信號都能被作用於擴增系統的Luenberger型觀測器同時估測。透過使用被估測的系統狀態與錯誤訊號,一個強健性H_∞錯誤容忍基於觀測器的PID路徑追蹤控制器被提出,以從能量的角度有效地減小未知干擾和攻擊信號對AGV的路徑追蹤和狀態估計性能的影響。此外,通過一種新的前饋線性化控制架構,可以顯著簡化在實作所提出的強健性H_∞錯誤容忍基於觀測器的PID路徑追蹤控制策略時的困難。然後,通過二次Lyapunov函數,設計過程被轉化為如何透過MATLAB LMI TOOLBOX輕鬆解決兩步驟線性矩陣不等式(LMI)問題。此外,控制飽和也同時在設計控制策略時被納入考量以滿足PID控制器對物理致動器的限制條件,使所提出的控制方案更加實用。最後,我們以AGV的三車道變換任務為例進行了數值模擬,以說明設計過程並驗證所提出的設計方法的性能。
In this study, a robust H_∞ observer-based PID path tracking control design is proposed for Autonomous Ground Vehicle (AGV) under the effect of external disturbance, actuator/sensor fault signals and control saturation. To protect the AGV system from the corruption of actuator/sensor fault signals, two smoothed signal models are introduced. These smoothed signal models are utilized to precisely estimate these fault signals and are integrated with the AGV dynamics system as an augmented system. Then, both system states and fault signals are estimated by the proposed Luenberger-type observer of augmented system simultaneously. By utilizing the estimated system states and fault signals, a robust H_∞ fault-tolerant observer-based PID path tracking controller is implemented to efficiently attenuate the influence of unknown disturbance and attack signals on the path tracking and state estimation performance of AGV from the energy point of view. Moreover, the implementation of proposed H_∞ fault-tolerant observer-based PID path tracking control strategy can be significantly simplified by a novel feedforward linearization control scheme. Then, by quadratic Lyapunov function, the design procedure becomes how to solve a two-step linear matrix inequality (LMI) via LMI TOOLBOX in MATLAB easily. Further, control restriction is also considered to meet the constraints of physical actuator saturation on PID controller, making the proposed control scheme more applicable. Finally, the triple lane changes task of AGV is simulated as a numerical example to illustrate the design procedure and to validate the performance of proposed design method.
摘要:I
Abstract:II
致謝:III
Content:IV
I. INTRODUCTION:1
II. PRELIMINARY AND PROBLEM FORMULATION:4
II.A. SYSTEM DYNAMIC MODEL OF AUTONOMOUS GROUND VEHICLE:4
II.B. PROBLEM FORMULATION:12
III. ROBUST H∞ FAULT-TOLERANT OBSERVER-BASED PID PATH TRACKING CONTROL STRATEGY FOR AGV SYSTEM WITH CONTROL SATURATION:12
IV. SIMULATION EXAMPLE:18
IV.A. STRUCTURE OF SYSTEMS:19
IV.B. SIMULATION RESULTS:19
V. CONCLUSION:28
REFERENCE:29
[1] S. H. ˙Zak, Systems and Control. New York Oxford OXFORD UNIVERSITY PRESS, 2003.
[2] A. B. WILL and S. H. ZAK, “Modelling and control of an automated vehicle,” Vehicle System Dynamics, vol. 27, no. 3,
pp. 131–155, 1997.
[3] A. Eskandarian, C. Wu, and C. Sun, “Research advances and challenges of autonomous and connected ground vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2, pp. 683–711, Feb. 2021.
[4] J. Wang, Z. Luo, Y. Wang, B. Yang, and F. Assadian, “Coordination control of differential drive assist steering and vehicle
stability control for four-wheel-independent-drive ev,” IEEE Trans. Veh. Technol, vol. 67, no. 12, pp. 11 453–11 467, Dec.
2018.
[5] C. Zhang, J. Hu, J. Qiu, W. Yang, H. Sun, and Q. Chen, “A novel fuzzy observer-based steering control approach for path
tracking in autonomous vehicles,” IEEE Trans. Fuzzy Syst., vol. 27, no. 2, pp. 278–290, Feb. 2019.
[6] R. Marino, S. Scalzi, G. Orlando, and M. Netto, “A nested pid steering control for lane keeping in vision based autonomous
vehicles,” in American Control Conference, St. Louis, MO, USA, Jul. 2009, pp. 2885 – 2890.
30
[7] H. Shen, F. Li, J. Cao, Z.-G. Wu, and G. Lu, “Fuzzy-model-based output feedback reliable control for network-based semi-
markov jump nonlinear systems subject to redundant channels,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4599–4609,
Nov. 2020.
[8] R. R. Bambulkar, G. S. Phadke, and S. Salunkhe, “Movement control of robot using fuzzy pid algorithm,” in Interna-
tional Conference on Electrical, Electronics, Engineering Trends, Communication, Optimization and Sciences(EEECOS),
Tadepalligudem, 2016, pp. 1–5.
[9] Z. Yachen and H. Yueming, “On pid controllers based on simulated annealing algorithm,” in Chinese Control Conference
(CCC), Kunming, China, 2008, pp. 225–228.
[10] C.-S. Tseng and B.-S. Chen, “Multiobjective pid control design in uncertain robotic systems using neural network
elimination scheme,” IEEE Trans. Syst. Man Cybern. Syst., vol. 31, no. 6, pp. 632–644, Nov. 2001.
[11] A. Al-Mayyahi, W. Wang, and P. Birch, “Path tracking of autonomous ground vehicle based on fractional order pid
controller optimized by pso, herl’any, slovakia,” in IEEE International Symposium on Applied Machine Intelligence and
Informatics (SAMI), 2015, pp. 109–114.
[12] A. Haytham, Y. Z. Elhalwagy, A. Wassal, and N. M. Darwish, “Modeling and simulation of four-wheel steering unmanned
ground vehicles using a pid controller,” in International Conference on Engineering and Technology (ICET), Cairo, Egypt,
2014, pp. 1–8.
[13] X. Jin, Z. Su, X. Zhao, J. Gong, and Y. Jiang, “Design of a fuzzy-pid longitudinal controller for autonomous ground
vehicle,” in IEEE International Conference on Vehicular Electronics and Safety, Beijing, China, 2011, pp. 269–273.
[14] D. H. Kim, “Tuning of a pid controller using an artificial immune network model and local fuzzy set,” in Proceedings
Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569), Vancouver, BC, Canada,
2001, pp. 2698–2703 vol.5.
[15] P. Gawthrop, “Self-tuning pid control structures,” in IEE Colloquium on Getting the Best Our of PID in Machine Control,
London, UK, 1996, pp. 4/1–4/4.
[16] B. Verma and P. K. Padhy, “Robust fine tuning of optimal pid controller with guaranteed robustness,” IEEE Trans. Ind.
Electron., vol. 67, no. 6, pp. 4911–4920, 2020.
[17] S. Woo, H. J. Jo, and D. H. Lee, “A practical wireless attack on the connected car and security protocol for in-vehicle
can,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 2, pp. 993–1006, Apr. 2015.
[18] B. Tabbache, N. Rizoug, M. E. H. Benbouzid, and A. Kheloui, “A control reconfiguration strategy for post-sensor ftc in
induction motor-based evs,” IEEE Trans. Veh. Technol, vol. 62, no. 3, pp. 965–971, Mar. 2013.
[19] L. Bai, Z. Gao, M. Qian, and X. Zhang, “Sliding mode observer-based ftc strategy design for satellite attitude systems
with sensor fault,” in Chinese Control And Decision Conference (CCDC), Nanchang, China, 2019, pp. 428–433.
[20] D. Rotondo, J.-C. Ponsart, F. Nejjari, D. Theilliol, and V. Puig, “Virtual actuator-based ftc for lpv systems with saturating
actuators and fdi delays,” 09 2016, pp. 831–837.
[21] Q. Shi and H. Zhang, “Fault diagnosis of an autonomous vehicle with an improved svm algorithm subject to unbalanced
datasets, barcelona, spain,” IEEE Trans. Ind. Electron., vol. 68, no. 7, pp. 6248–6256, 2021.
[22] W. Zhao, A. Wang, S. Zou, and H. Zhang, “Individual auxiliary and fault-tolerant control of steer-by-wire system
considering different drivers steering characteristics,” IEEE/ASME Trans. Mechatronics, vol. 26, no. 3, pp. 1558–1569,
Jun. 2021.
[23] H. Deng, Y. Zhao, A.-T. Nguyen, and C. Huang, “Fault-tolerant predictive control with deep-reinforcement-learning-based
torque distribution for four in-wheel motor drive electric vehicles,” IEEE/ASME Trans. Mechatronics, vol. 28, no. 2, pp.
668–680, Apr. 2023.
31
[24] E. Mousavinejad, X. Ge, Q.-L. Han, T. J. Lim, and L. Vlacic, “An ellipsoidal set-membership approach to distributed joint
state and sensor fault estimation of autonomous ground vehicles,” IEEE/CAA J. Autom. Sin., vol. 8, no. 6, pp. 1107–1118,
Jun. 2021.
[25] M.-Y. Lee and B.-S. Chen, “Robust H∞ network observer-based attack-tolerant path tracking control of autonomous
ground vehicle,” IEEE Access, vol. 10, pp. 58 332–58 353, 2022.
[26] B.-S. Chen and T.-W. Hung, “Integrating local motion planning and robust decentralized fault-tolerant tracking control for
search and rescue task of hybrid uavs and biped robots team system,” IEEE Access, vol. 11, pp. 45 888–45 909, 2023.
[27] B. S. Chen, M. Y. Lee, W. Y. Chen, and W. Zhang, “Reverse-order multi-objective evolution algorithm for multi-objective
observer-based fault-tolerant control of t-s fuzzy systems,” IEEE Access, vol. 9, pp. 1556–1574, 2021.
[28] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory. SIAM,
1994.
[29] B.-S. Chen, Y.-C. Liu, M.-Y. Lee, and C.-L. Hwang, “Decentralized h pid team formation tracking control of large-scale
quadrotor uavs under external disturbance and vortex coupling,” IEEE Access, vol. 10, pp. 108 169–108 184, 2022.
(此全文20250815後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *