帳號:guest(18.223.170.190)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧永鈞
作者(外文):Lu, Yung-Chun
論文名稱(中文):對於六自由度固定翼無人機在風擾動以及致動器飽和下基於觀測器的強健軌跡追蹤控制
論文名稱(外文):Robust Observer-Based Reference Trajectory Tracking Control of 6-DOF Fixed-Wing UAV Under Wind Disturbance and Actuator Saturation
指導教授(中文):陳博現
指導教授(外文):Chen, Bor-Sen
口試委員(中文):黃志良
吳常熙
吳德豐
口試委員(外文):Hwang, Chih-Lyang
Wu, Chang-Hsi
Wu, Ter-Feng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061528
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:41
中文關鍵詞:基於觀測器的H∞控制小型固定翼無人機全域線性化參考軌跡追蹤線性矩陣不等式
外文關鍵詞:H∞ observer-based controlsmall fixed-wing UAVglobal linearizationreference tracking controllinear matrix inequalities
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在這項研究中,我們提出了一個考量了風的擾動、建模錯誤、感測器噪音和致動器飽和等因素,適用於六自由度固定翼無人機模型,基於觀測器的強健H∞軌跡追蹤控制方案。透過提出的控制器,小型固定翼無人機可以在任務中直接追蹤規劃的軌跡,無需結合導航控制器以及自動駕駛儀。要設計基於觀測器的強健H∞參照軌跡追蹤控制器,必須解決一個非常複雜的非線性控制器/觀測器耦合的HJI問題。透過使用全域線性化方法,原來複雜的非線性HJI可以被轉化為一組雙線性矩陣不等式。最後,透過二步驟方法,雙線性不等式可以被轉化為一組線性矩陣不等式,並透過YALMIP工具箱得解。在結尾,會提供兩個數值模擬例子來證明提出方法之H∞軌跡預測與追蹤表現。第一個例子證明提出的基於觀測器的控制器可以在不同的飛行狀態下運作良好。而在第二個例子中,固定翼無人機會執行一個由杜賓路徑算法產生的搜救任務。以上兩個例子都會與傳統的導航-自動駕駛控制架構比較,作為驗證。
In this study, a robust H∞ observer-based trajectory tracking control scheme is proposed for the nonlinear 6 degrees of freedom (DoF) small fixed-wing unmanned air vehicle (UAV) model under wind disturbance, modeling error, sensor noise and actuator saturation. By the proposed method, the small fixed-wing UAV is able to follow the desired trajectory for some tasks, without the need of combining guidance controller and autopilot. The robust H∞ observer-based reference trajectory tracking control design problem needs to solve a very complicated nonlinear observer/control coupled Hamilton Jocobi inequality (HJI). Therefore, by employing the global linearization method, the original nonlinear HJI can be transformed into a set of bilinear matrix inequalities (BMIs). Finally, by the two-step method, the BMIs can be further transformed into a set of linear matrix inequalities (LMIs), which can be easily solved with YALMIP toolbox. In the end, two numerical simulation examples are presented to prove the robust H∞ trajectory estimation and tracking performance of the proposed H∞ robust observer-based reference trajectory tracking control strategy. The first one shows that the proposed observer-based trajectory controller is able to operate under different flight regimes, while in the second one the fixed-wing UAV can perform a searching mission, whose reference path is generated by Dubins path. Further, a comparison with a traditional guidance-autopilot control strategy is also given for the trajectory tracking performance validation of the proposed method.
摘要 I
Abstract II
致謝 III
Content IV
I. INTRODUCTION 1
II. PRELIMINARY AND PROBLEM FORMULATION 5
II.A PHYSICAL PLANT OF FIXED-WING UAV 5
II.B PROBLEM FORMULATION 13
III. NONLINEAR OBSERVER-BASED TRAJECTORY TRACKING CONTROL OF FIXED-WING UAV VIA GLOBAL LINEARIZATION METHOD 15
IV. NUMERICAL SIMULATION RESULTS 22
IV.A THE FIRST EXAMPLE 24
IV.B THE SECOND EXAMPLE 32
V. CONCLUSION 33
APPENDIX A PROOF OF THEOREM 1 36
APPENDIX B PROOF OF THEOREM 2 37
REFERENCES 40

[1] K. D. Rao, “Modeling nonlinear features of V tail aircraft using MNN,” IEEE Trans. Aerosp. Electron. Syst., vol. 31, no.
2, pp. 841-845, Apr. 1995.
[2] R. W. Beard, T. W. McLain, Small unmanned aircraft: Theory and practice, NJ, USA: Princeton Univ. Press, 2012.
[3] B.-S. Chen, C.-S. Wu and H.-J, Uang, “A minimax tracking design for wheeled vehicles with trailer based on adaptive
fuzzy elimination scheme,” IEEE Trans. Control Syst. Technol., vol. 8, no. 3, pp. 418-434, May 2000.
[4] L. E. Dubins, “On curves of minimal length with a constraint on average curvature and with prescribed initial and terminal
positions and tangents,” Am. J. Math., vol. 79, no. 3, pp. 497–516, Jul. 1957.
[5] I. Lugo-C´ardenas, G. Flores, S. Salazar and R. Lozano, “Dubins path generation for a fixed wing UAV,” in International
Conference on Unmanned Aircraft Systems(ICUAS), Orlando, FL, USA, 2014, pp. 339-346.
[6] X. Song and S. Hu, “2D path planning with dubins-path-based A* algorithm for a fixed-wing UAV,” in International
Conference on Control Science and Systems Engineering(ICCSSE), Beijing, China, 2017, pp. 69-73.
[7] D. R. Nelson, D. B. Barber, T. W. McLain and R. W. Beard, “Vector field path following for miniature air vehicles,” IEEE
Trans. Robot., vol. 23, no. 3, pp. 519-529, Jun. 2007.
[8] X. Wang, S. Roy, S. Far`ı and S. Baldi, “Adaptive vector field guidance without a priori knowledge of course dynamics
and wind,” IEEE/ASME Trans. Mechatron., vol. 27, no. 6, pp. 4597-4607, Dec. 2022.
[9] S. Zhao, X. Wang, Z. Lin, D. Zhang and L. Shen, “Integrating vector field approach and input-to-state stability curved
path following for unmanned aerial vehicles,” IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 8, pp. 2897-2904, Aug.
2020.
[10] Y. Liang, Y. Jia, Z. Wang and F. Matsuno, “Combined vector field approach for planar curved path following with fixedwing
UAVs,” in Amer. Control Conf., Chicago, IL, USA, 2015, pp. 5980-5985.
[11] Y. Liang, Y. Jia, J. Du and J. Zhang, “Vector field guidance for three-dimensional curved path following with fixed-wing
UAVs,” in Amer. Control Conf., Chicago, IL, USA, 2015, pp. 1187-1192
[12] S. Kim, H. Cho and D. Jung, “Circular formation guidance of fixed-wing UAVs using mesh network,” IEEE Access, vol.
10, pp. 115295-115306, 2022.
[13] H. J. Kim et al., “Fully autonomous vision-based net-recovery landing system for a fixed-wing UAV,” IEEE/ASME Trans.
Mechatron. vol. 18, no. 4, pp. 1320-1333, Aug. 2013.
[14] Z. Tang, R. Cunha, T. Hamel and C. Silvestre, “Aircraft landing using dynamic two-dimensional image-based guidance
control,” IEEE Trans. Aerosp. Electron. Syst., vol. 55, no. 5, pp. 2104-2117, Oct. 2019.
[15] J. L. G. Olavo, G. D. Thums, T. A. Jesus, L. C. de Ara´ujo Pimenta, L. A. B. Torres and R. M. Palhares, “Robust guidance
strategy for target circulation by controlled UAV,” IEEE Trans. Aerosp. Electron. Syst., vol. 54, no. 3, pp. 1415-1431, Jun.
2018.
[16] S. Baldi, D. Sun, X. Xia, G. Zhou and D. Liu, “ArduPilot-based adaptive autopilot: architecture and software-in-the-loop
experiments,” IEEE Trans. Aerosp. Electron. Syst., vol. 58, no. 5, pp. 4473-4485, Oct. 2022.
[17] E. N. Mobarez, A. Sarhan, and A. M. Mohamed, “Modeling of fixed wing UAV and design of multivariable flight controller
using PID tuned by local optimal control,” IOP Conf. Ser. Mater. Sci. Eng., Vol. 610. No. 1., 2019.
[18] PX4 User Guide, “Controller diagrams,” 2023. [Online].
[19] S. Baldi, S. Roy, K. Yang and D. Liu, “An underactuated control system design for adaptive autopilot of fixed-wing
drones,” IEEE/ASME Trans. Mechatron. vol. 27, no. 5, pp. 4045-4056, Oct. 2022.
[20] B. Zhang, X. Sun, S. Liu, M. Lv and X. Deng, “Event-triggered adaptive fault-tolerant synchronization tracking control
for multiple 6-DOF fixed-wing UAVs,” IEEE Trans. Veh. Technol., vol. 71, no. 1, pp. 148-161, Jan. 2022.
[21] E. Bertran and A. S`anchez-Cerd`a, “On the tradeoff between electrical power consumption and flight performance in
fixed-wing UAV autopilots,” IEEE Trans. Veh. Technol., vol. 65, no. 11, pp. 8832-8840, Nov. 2016.
[22] J. L¨ofberg, “YALMIP: A toolbox for modeling and optimization in MATLAB” in Proc. IEEE Int. Conf. Robot. Automat.,
Tapei, Taiwan, 2004, pp. 284–289
[23] J. Li, G. Lei, Y. Xian and X. Wang, “Research on ground effect of shipborne flying-wing UAV,” in IEEE Int. Conf. Comput.
Intell.,Kunming, China, 2014, pp. 685-688.
[24] B.-S. Chen, W.-H. Chen and H.-L. Wu, “Robust H2/ H∞ global linearization filter design for nonlinear stochastic systems,”
IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 56, no. 7, pp. 1441-1454, Jul. 2009.
[25] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear matrix inequalities in system and control theory,”
Philadelphia, PA, USA: SIAM, 1994.
[26] B.-S. Chen, and C.-F. Wu, “Robust scheduling filter design for a class of nonlinear stochastic Poisson signal systems,”
IEEE Trans. on Signal Processing, vol. 63, no. 23, pp. 6245-6257, Dec. 2015.
[27] J. W. Langelaan, N. Alley, and J. Neidhoefer, “Wind field estimation for small unmanned aerial vehicles,” J. Guid. Control
Dyn., pp. 1016-1030, 2011.
[28] B.-S. Chen, Y.-C. Liu, M.-Y. Lee and C.-L. Hwang, “Decentralized H∞ PID team formation tracking control of large-scale
quadrotor UAVs under external disturbance and vortex coupling,” IEEE Access, vol. 10, pp. 108169-108184, 2022.
[29] G. Platanitis and S. Shkarayev, “Integration of an autopilot for a micro air vehicle,” Infotech@ Aerospace, 2005.
(此全文20250809後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *