帳號:guest(18.118.128.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳立昕
作者(外文):Chen, Li-Xin
論文名稱(中文):直接數位控制與D-Q軸轉換控制三相三線LCL換流器性能比較
論文名稱(外文):Performance Comparison between Direct Digital Control and D-Q Axis Control for Three-Phase Three-Wire Inverter with LCL Filter
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):林長華
余國瑞
廖益弘
口試委員(外文):Lin, Chang-Hua
Yu, Gwo-Ruey
Liao, Yi-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061512
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:119
中文關鍵詞:三相三線換流器解耦合直接數位控制D-Q軸轉換控制寬電感變化
外文關鍵詞:three phase three-wire inverterdirect digital controlD-Q axis control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
本研究旨在比較三相三線LCL換流器中,使用「直接數位控制」和「D-Q軸轉換控制」兩種控制策略之性能差異。為了實現此目標,我們選取兩組具有不同衰減率的LCL濾波器做為實驗對象,使兩組濾波器採用兩種不同控制法進行了實驗,並對併網實驗結果進行評估,評估換流器的暫態響應、穩態響應以及抗擾動的控制能力。
首先,介紹直接數位控制與D-Q軸轉換控制之控制策略,在直接數位控制中,透過分切合整過程推導,實現三相解耦合與納入電感量控制,使得換流器控制更加強健;在D-Q軸轉換控制中,則透過派克變換與數學推導,簡化三相系統得出系統於D-Q座標下之等效模型,利用D-Q座標模型建立D-Q軸轉換控制。
本研究也對LCL濾波器考量電感衰減率下,進行濾波器的分析與設計,使用衰減率較大之濾波器,可以有效縮小換流器體積與重量,然而其缺點仍不清晰。因此,使用所推導出的直接數位控制與D-Q軸轉換控制,兩種不同控制法進行不同衰減率之探討,並比較其結果,分析不同衰減率之濾波器對兩種控制法產生之影響。
本研究之主要貢獻為:(1)測試並比較解耦合直接數位控制和D-Q軸轉換控制兩種策略在LCL換流器中之控制性能;(2)測試並比較解耦合直接數位控制與D-Q軸轉換控制對於不同程度之電感量變化影響;(3)測試並比較解耦合直接數位控制與D-Q軸轉換控制對於電網失真之控制能力。
This research focuses on comparing the performances of direct digital control and D-Q axis control. To achieve this goal, two LCL filters with different inductance attenuations are designed. The experiment involves using an inverter with these filters and adopting both direct digital control and D-Q axis control. The objective is to evaluate the control ability of the system, including transient responses, steady-state responses, and anti-disturbance ability.
First, the direct digital control is introduced. It employs the division-summation (D-Σ) process to achieve the decoupling of three-phase system and incorporates system parameters into the controller calculation. This control method speeds up the responses and enhances the system robustness. On the other hand, D-Q axis control simplifies the three-phase system by D-Q domain with Park transformation. The system model in the D-Q domain is constructed through by the mathematical derivation. The controller of system is designed according to the model of inverter in D-Q domain.
This research includes LCL filter design by considering inductance attenuation, which can reduce sizes and values of the filter. However, the disadvantages of the inverter with these filters are not clear. Thus, we do the experiment with different control methods and filters. We compare the results to analyze the effects of these filters with different controllers.
The major contributions of this thesis are:(1) testing and comparing the performances of the inverter with direct digital control and D-Q axis control, (2) testing and comparing the effects of two control method with different inductance attenuation, (3) testing and comparing control ability of two control method when grid in distorted.
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-2-1 三相換流器控制策略 2
1-2-2 換流器控制器 5
1-3 論文大綱 9
第二章 系統架構與控制策略 11
2-1 三相三線換流器系統架構 11
2-2 三相解耦合直接數位控制 12
2-2-1 系統共模電壓 13
2-2-2 控制器設計 16
2-3 D-Q軸轉換控制 19
2-3-1 派克變換(Park Transformation)[6] 19
2-3-2 D-Q座標軸之三相等效模型 20
2-3-3 控制器設計 22
第三章 韌體規劃與動作流程 23
3-1 韌體架構 23
3-2 微控制器 24
3-2-1 中斷系統 24
3-2-2 腳位規劃 25
3-2-3 類比/數位轉換模組 26
3-2-4 脈波寬度調變模組 27
3-3 韌體控制流程 28
3-3-1 程式流程 28
3-3-2 模組規劃 33
第四章 系統周邊電路 35
4-1 輔助電源 35
4-1-1 控制板輔助電源系統 35
4-1-2 驅動輔助電源系統 38
4-2 電壓/電流回授 40
4-2-1 直流鏈電壓回授 40
4-2-2 交流回授 41
4-3 驅動電路 46
4-3-1 緩衝器與準位調整 46
4-3-2 單相開關臂驅動電路 47
4-4 硬體保護電路 49
4-5 併網繼電器電路 50
第五章 系統參數設計與實務考量 51
5-1 換流器規格 51
5-2 LCL濾波器設計 52
5-2-1 設計考量 53
5-2-2 設計方法 55
5-2-3 設計流程 61
5-3 實務考量 62
5-3-1 濾波電感考量 62
5-3-2 韌體程式考量 69
第六章 實測結果與驗證 71
6-1 系統規格與參數 71
6-2 控制法說明 72
6-3 實測波形 73
6-3-1 暫態步階響應比較 73
6-3-2 穩態波形比較 76
6-3-3 電網失真響應 95
第七章 結論與未來研究方向 115
7-1 結論 115
7-2 未來研究方向 116
7-2-1 加入穩定度分析 116
7-2-2 分析孤島情況下之比較結果 116
7-2-3 加入通訊功能 116
參考文獻 117



參考文獻
[1] J. F. Silva, N. Rodrigues and J. Costa, "Space vector alpha-beta sliding mode current controllers for three-phase multilevel inverters," in 2000 IEEE 31st Annual Power Electron. Spec. Conf. Proc. (Cat. o.00CH37018), 23-23 June 2000 2000, vol. 1, pp. 133-138.
[2] D. Murillo-Yarce, J. J. Marulanda-Durango, A. E. Mejía and A. Alzatc-Gómez, "Optimal Indirect Power Predictive Controller in the Alpha-Beta Reference Frame for Grid-Connected Converters," in 2019 FISE-IEEE/CIGRE Conf. - Living the energy Transition (FISE/CIGRE), 4-6 Dec. 2019, pp. 1-6.
[3] S. Ahmad, S. Mekhilef and H. Mokhlis, "DQ-axis Synchronous Reference Frame based P-Q Control of Grid Connected AC Microgrid," in 2020 IEEE Int. Conf. on Computing, Power Commun. Technol. (GUCON), 2-4 Oct. 2020, pp. 842-847.
[4] C. Wooyoung, C. Morris and B. Sarlioglu, "Modeling three-phase grid-connected inverter system using complex vector in synchronous dq reference frame and analysis on the influence of tuning parameters of synchronous frame PI controller," in 2016 IEEE Power Energy Conf. at Illinois (PECI), 19-20 Feb. 2016, pp. 1-8.
[5] W. C. Duesterhoeft, M. W. Schulz and E. Clarke, "Determination of Instantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Components," Trans. of the American Institute of Electrical Engineers, vol. 70, no. 2, pp. 1248-1255, 1951.
[6] R. H. Park, "Two-reaction theory of synchronous machines generalized method of analysis-part I," Trans. of the American Institute of Electrical Engineers, vol. 48, no. 3, pp. 716-727, 1929.
[7] T. F. Wu, C. H. Chang, L. C. Lin, Y. C. Chang and Y. R. Chang, "Two-Phase Modulated Digital Control for Three-Phase Bidirectional Inverter With Wide Inductance Variation," IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1598-1607, 2013.
[8] 曾國峰 "10 kVA三相四線高低頻互補換流器," 10 kVA Three-Phase Four-Wire Hybrid Frequency Inverters, 國立清華大學, 2022.
[9] 吳俊毅 "三相三線LCL高切頻雙向換流器研製," Design and Implementation of Three-Phase Three-Wire LCL High Switching Frequency Bi-directional Inverter, 國立清華大學, 2020.
[10] K. Suman and A. T. Mathew, "Speed Control of Permanent Magnet Synchronous Motor Drive System Using PI, PID, SMC and SMC plus PID Controller," in 2018 Int. Conf. on Advances in Comput., Commun. Inform. (ICACCI), 19-22 Sept. 2018,.
[11] M. A. L, A. Kunjumuhammed, J. Tomy, G. U, M. Sivadas and A. Mohan, "Stabilization of Rotary Inverted Pendulum using PID Controller," in 2021 8th Int Conf. on Smart Comput. Commun. (ICSCC), 1-3 July 2021, pp. 376-380.
[12] S. Omatu, T. Fujinaka and M. Yoshioka, "Neuro-PID control for inverted single and double pendulums," in Smc 2000 conf.e proc. 2000 ieee int. conf. syst., man and cybernetics. 'cybernetics evolving to sys., humans, organizations, and their complex interactions' (cat. no.0, 8-11 Oct. 2000, vol. 4, pp. 2685-2690 vol.4.
[13] L. Yun, A. Kiam Heong and G. C. Y. Chong, "PID control system analysis and design," IEEE Control Syst. Mag., vol. 26, no. 1, pp. 32-41, 2006.
[14] K. Lim and J. Choi, "PR control based cascaded current and voltage control for seamless transfer of microgrid," in 2015 IEEE 2nd Int. Future Energy Electron. Conf. (IFEEC), 1-4 Nov. 2015, pp. 1-6.
[15] K. Lim and J. Choi, "PR based indirect current control for seamless transfer of grid-connected inverter," in 2016 IEEE 8th Int. Power Electron. and Motion Control Conf. (IPEMC-ECCE Asia), 22-26 May 2016, pp. 3749-3755.
[16] X. Xu, J. Liu and Y. Zhang, "Research of current hysteresis control for boost bridgeless PFC," in 2018 13th IEEE Conf. on Ind. Electron. and Appl. (ICIEA), 31 May-2 June 2018, pp. 265-269.
[17] H. Kim, J. Kim, M. Shim, J. Jung, S. Park and C. Kim, "A digitally controlled DC-DC buck converter with bang-bang control," in 2014 Int. Conf. on Electron., Inf. and Commun. (ICEIC), 15-18 Jan. 2014 2014, pp. 1-2.
[18] L. A. Zadeh, "Fuzzy sets," Inf. and Control, vol. 8, no. 3, pp. 338-353, 1965/06/01/ 1965.
[19] 黃彥翔 "混頻並聯換流器系統," Hybrid-frequency Parallel-inverter Systems, 國立清華大學, 新竹市, 2021.
[20] TEXAX INSTRUMENTS, "TMS320x2833x, TMS320x2823x Real-Time Microcontrollers ", Technical Reference Manual, 2020.
[21] TEXAX INSTRUMENTS, "TMS320F2833x, TMS320F2823x Real-Time Microcontrollers ", Datasheet, 2022.
[22] MEAN WELL, "LRS-150 series ", Datasheet, 2020.
[23] MEAN WELL, "DKA30 series ", Datasheet, 2022.
[24] MEAN WELL, "SKE10 serie ", Datasheet, 2022.
[25] MEAN WELL, "SKA15 series ", Datasheet, 2022.
[26] TEXAX INSTRUMENTS, "TPS6240x 2.25-MHz 400-mA and 600-mA Dual Step-Down Converter In Small 3-mm x 3-mm VSON Package," Datasheet, 2014.
[27] MEAN WELL, "LRS-35 series ", Datasheet, 2020.
[28] MEAN WELL, "SPBW03 & DPBW03 series," Datasheet, 2017.
[29] Power Mate Technology, "PDL03 series," Datasheet, 2008.
[30] U. Technologies, "UTC LM79XX Linear Integrated Circuit," Datasheet.
[31] 林佑諦 "單相LCL併網型換流器研製," Design and Implementation of Single-Phase Grid-Connected Inverter with LCL Filter, 國立清華大學, 2022.
[32] BingZi, "TV0815-1 型微型精密交流電壓互感器," Datasheet, 2016.
[33] LEM, "Current Transducer LA 55-P," Datasheet.
[34] TEXAX INSTRUMENTS, "SN74LVC4245A Octal Bus Transceiver and 3.3-V to 5-V Shifter With 3-State Outputs," Datasheet, 2022.
[35] Infineon, "1EDI EiceDRIVER™ Compact Separate output variant for MOSFET," Datasheet, 2015.
[36] M. Dursun and D. M. K, "LCL Filter Design for Grid Connected Three-Phase Inverter," in 2018 2nd Int. Symposium on Multidisciplinary Studies and Innovative Technol. (ISMSIT), 19-21 Oct. 2018, pp. 1-4.
[37] 吳欣怡 "具寬電感值變化三相LCL濾波器設計並以併網型換流器驗證," Three-Phase LCL Filter Design with Wide Inductance Variation and Verification of Grid-Connected Inverter, 國立清華大學, 2021.
[38] T. F. Wu, M. Misra, L. C. Lin and C. W. Hsu, "An Improved Resonant Frequency Based Systematic LCL Filter Design Method for Grid-Connected Inverter," IEEE Trans. Ind. Electron., vol. 64, no. 8, pp. 6412-6421, 2017.
[39] "IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems," IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1-29, 2014.
[40] "IEEE Standard for Harmonic Control in Electric Power Systems," IEEE Std 519-2022 (Revision of IEEE Std 519-2014), pp. 1-31, 2022.
[41] M. Liserre, R. Teodorescu and F. Blaabjerg, "Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values," IEEE Trans. Power Electron., vol. 21, no. 1, pp. 263-272, 2006.
[42] Changsung Corporation, "MAGNETIC POWDER CORES," Datasheet.
[43] T.-F. Wu, C.-H. Chang and L.-C. Lin, "SVPWM-based D-Σ digital control for 3ϕ grid-connected inverter with wide inductance variation," in 2014 IEEE Energy Convers. Congress and Exposition (ECCE), 14-18 Sept. 2014, pp. 5044-5051.
[44] Z. Shuai, Y. Li, W. Wu, C. Tu, A. Luo and Z. J. Shen, "Divided DQ Small-Signal Model: A New Perspective for the Stability Analysis of Three-Phase Grid-Tied Inverters," IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6493-6504, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *