|
A. Microgrids [1] V. Nasirian, S. Moayedi, A. Davoudi, and F. L. Lewis, “Distributed cooperative control of DC microgrids,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2288-2303, 2015. [2] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016. [3] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016. [4] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017. [5] J. Wang, C. Jin, and P. Wang, “A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6188-6197, Aug. 2018. [6] S. Liu, R. Li, K. Huang, X. Li, W. Fang, and X. Liu, “A multivariable hysteresis-based DC bus signaling control for DC microgrid with enhanced reliability,” in Proc. IEEE ICDCM, pp. 1-6, 2019. [7] C. Yu, H. Zhou, X. Lu, J. Lai, and G. P. Liu, “Distributed optimal synchronization rate control for AC microgrids under event-triggered mechanism,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 1780-1793, 2021. [8] A. Navas-Fonseca, C. Burgos-Mellado, J. S. Gómez, F. Donoso, L. Tarisciotti, D. Sáez, R. Cárdenas, M. Sumner, “Distributed predictive secondary control for imbalance sharing in AC microgrids,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 20-37, Jan. 2022. [9] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON, 2010, pp. 3034-3039. [10] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010. B. Wind Generator Systems [11] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009. [12] F. Blaabjerg, M. Liserre, and K. Ma, “Power electronics converters for wind turbine systems,” IEEE Trans. Ind. Appl, vol. 48, no. 2, pp. 708-719, 2012. [13] K. Xie, Z. Jiang, and W. Li, “Effect of wind speed on wind turbine power converter reliability,” IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 96-104, March 2012. [14] F. Blaabjerg and K. Ma, “Wind energy systems,” in Proc. IEEE IRE, 2017, vol. 105, no. 11, pp. 2116-2131. IPMSGs: [15] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent magnet synchronous generator- based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011. [16] H. Karimi-Davijani and O. Ojo, “Optimum control of grid connected interior permanent magnet wind turbine generator,” in Proc. IEEE ECCE, 2012, pp. 3764-3771. [17] P. Roshanfekr, T. Thiringer, and M. Alatalo, “Performance of two 5 MW permanent magnet wind turbine generators using surface mounted and interior mounted magnets,” in Proc. IEEE ICEM, 2012, pp. 1041-1047. [18] M. E. Haque, Y. C. Saw, and M. M. Chowdhury, “Advanced control scheme for an IPM synchronous generator-based gearless variable speed wind turbine,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 354-362, April 2014. [19] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015. Wind turbine emulators: [20] J. M. Nye, J. G. de la Bat, M. A. Khan, and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065. [21] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES, 2012, pp. 5827-5832. [22] D. W. Choi, S. I. Byun, and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1-4, Jan. 2014. [23] J. S. Lee and K. B. Lee, “Open-circuit fault-tolerant control for outer switches of three-level rectifiers in wind turbine systems,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3806-3815, May 2016. [24] T. A. d. S. Barros, P. J. d. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, Nov. 2017. [25] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017. [26] P. Chen, K. Hu, Y. Lin, and C. Liaw, “Development of a prime mover emulator using a permanent-magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6114-6125, 2018. [27] J. Hussain and M. K. Mishra, “An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 730-739, 2020. Maximum power point tracking controls: [28] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, “High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010-1021, 2011. [29] K. Nishida, T. Ahmed, and M. Nakaoka, “A cost-effective high-efficiency power conditioner with simple MPPT control algorithm for wind-power grid integration,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 893-900, March-April. 2011. [30] Z. M. Dalala, Z. U. Zahid, W. S. Yu, and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013. [31] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” in Proc. IEEE EPDC, 2015, pp. 184-189. [32] J. Hussain and M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 31, pp. 697-705, 2016. [33] M. Nasir Uddin and N. Patel, “Maximum power point tracking control of IPMSG incorporating loss minimization and speed sensorless schemes for wind energy system,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1902-1912, March-April 2016. [34] H. T. Do, T. D. Dang, H. V. A. Truong, and K. K. Ahn, “Maximum power point tracking and output power control on pressure coupling wind energy conversion system,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1316-1324, Feb. 2018. C.IPMSM Drives Physical modeling of IPMSM and analysis: [35] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994. [36] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe, and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003. [37] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051. [38] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, 2006. [39] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013. [40] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed. Canada: John Wiley and Sons, 2013. [41] M. Onsal, B. Cumhur, Y. Demir, E. Yolacan, and M. Aydin, “Rotor design optimization of a new flux-assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, 2018. [42] T. Y. Lee, M. K. Seo, Y. Y. Ko, Y. J. Kim, and S. Y. Jung, “Electromagnetic performances analysis of IPMSM according to the current control method under flux-weakening control region,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1-6, April 2018. Speed controls: [43] M. A. Rahman, D.M. Vilathgamuwa, M.N. Uddin, and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, 2003. [44] Y. S. Kung and M. H. Tsai, “FPGA-based speed control IC for PMSM drive with adaptive fuzzy control,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2476-2486, Nov. 2007. [45] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009. [46] R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012. [47] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013. [48] S. Gao, Y. Wei, D. Zhang, H. Qi, Y. Wei, and Z. Yang, “Model-free hybrid parallel predictive speed control based on ultralocal model of PMSM for electric vehicles,” IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 9739-9748, Oct. 2022. Torque controls: [49] S. B. Ozturk and H. A. Toliyat, “Direct torque and indirect flux control of brushless DC motor,” IEEE/ASME Trans. Mechatroics, vol. 16, no. 2, pp. 351-360, 2011. [50] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382-2389, 2012. [51] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3728-3737, 2016. [52] A. Mora, Á. Orellana, J. Juliet, and R. Cárdenas, “Model predictive torque control for torque ripple compensation in variable-speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016. [53] Z. Zhang, C. Wei, W. Qiao, and L. Qu, “Adaptive saturation controller-based direct torque control for permanent-magnet synchronous machines,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7112-7122, Oct. 2016. [54] Y. Miao, H. Ge, M. Preindl, J. Ye, B. Cheng, and A. Emadi, “MTPA fitting and torque estimation technique based on a new flux-linkage model for interior-permanent-magnet synchronous machines,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5451-5460, 2017. [55] A. Nasr, C. Gu, X. Wang, G. Buticchi, S. Bozhko, and C. Gerada, “Torque-performance improvement for direct torque-controlled PMSM drives based on duty-ratio regulation,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 749-760, Jan. 2022. Current controls: [56] M. N. Uddin, T. S. Radwan, G. H. George, and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000. [57] M. Kadjoudj, M. E. H. Benbouzid, C. Ghennai, and D. Diallo, “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 109-115, 2004. [58] T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906-3914, 2016. [59] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009. Commutation shift controls: [60] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006. [61] J. Fang, W. Li, and H. Li, “Self-compensation of the commutation angle based on DC-Link current for high-speed brushless DC motors with low inductance,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 428-439, 2014. [62] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, pp. 4493-4504, 2016. D. Switch-mode Rectifiers AC/DC converter: [63] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004. [64] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, May 2010. [65] M. Liserre, R. Cárdenas, M. Molinas, and J. Rodriguez, “Overview of multi-MW wind turbines and wind parks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081-1095, 2011 [66] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp. 1619-1626. [67] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems- part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013. [68] T. B. Soeiro and J. W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, Sept. 2013. [69] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014. [70] J. Lee and K. Lee, “A novel carrier-based PWM method for Vienna rectifier with a variable power factor,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 3-12, 2016. [71] S. Yang, J. Park, and K. Lee, “A carrier-based PWM with synchronous switching technique for a Vienna rectifier,” in Proc. IEEE PECON, 2016, pp. 728-733. [72] J. S. Lee and K. B. Lee, “Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4075-4084, June 2016. [73] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of three-step and six-step PWM in average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7264-7272, Oct. 2016. [74] J. Lee and K. Lee, “Predictive control of Vienna rectifiers for PMSG systems,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2580-2591, 2017. [75] J. S. Lee and K. B. Lee, “Open-switch fault diagnosis and tolerant control methods for a Vienna rectifier using bi-directional switches,” in Proc. IEEE ECCE, 2018, pp. 4129-4134. [76] J. H. Park, J. S. Lee, M. Y. Kim and K. B. Lee, “Diagnosis and tolerant control methods for an open-switch fault in a Vienna rectifier,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 7112-7125, Dec. 2021. [77] Y. Yuan and Z. Zhang, “A single-phase Vienna rectifier with wide output voltage range,” IEEE Trans. Transport. Electrific., vol. 8, no. 3, pp. 3884-3895, Sept. 2022. One-cycle control (OCC): [78] Y. Li, X. Zha, F. Liu, and L. Bu, “Discrete-time one cycle control of Vienna rectifiers considering the dc-link neutral-point voltage balance,” in Proc. IEEE ECCE, 2013, pp. 3011-3018. [79] T. Gao, S. Zhang, S. Zhang, and J. Zhao, “A dynamic model and modified one-cycle control of three-level front-end rectifier for neutral point voltage balance,” IEEE Access, vol. 5, pp. 2000-2010, 2017. [80] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, p. 3375, 2019. [81] C. Wang, H. Hu, H. Cheng, Z. Zhao, and J. Liu, “Voltage balancing control of cascaded single-phase Vienna converter based on one cycle control with unbalanced loads,” IEEE Access, vol. 8, pp. 95126-95136, 2020. [82] B. Xu, K. Liu, X. Ran, Q. Huai, and S. Yang, “Model predictive duty cycle control for three-phase vienna rectifiers with reduced neutral-point voltage ripple under unbalanced DC links,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 5, pp. 5578-5590, Oct. 2022. E. Inverters [83] D. G. Holmes, “The significance of zero space vector placement for carrier-based PWM schemes,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1122-1129, 1996. [84] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage- source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [85] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999. [86] L. N. Amuda, B. J. Cardoso Filho, S. M. Silva, S. R. Silva, and A. S. A. C. Diniz, “Wide bandwidth single and three-phase PLL structures for grid-tied PV systems,” in Proc. IEEE PVSC, 2000, pp. 1660-16630. [87] B. Shi, G. Venkataramanan, and N. Sharma, “Design considerations for reactive elements and control parameters for three phase boost rectifiers,” in Proc. IEEE IEMDC, 2005, pp. 1757-1764. [88] Y. Chang and Y. Lai, “Parameter tuning method for digital power converter with predictive current-mode control,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2910-2919, 2009. [89] M. Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299-2309, Sept. 2010. [90] C. Hou and P. Cheng, “Experimental verification of the active front-end converters dynamic model and control designs,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1112-1118, 2011. [91] J. A. Mueller, M. Rasheduzzaman, and J. W. Kimball, “A model modification process for grid-connected inverters used in islanded microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 240-250, March 2016. [92] Y. Deng, Y. Wang, K. H. Teo, and R. G. Harley, “A simplified space vector modulation scheme for multilevel converters,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1873-1886, March 2016. Dead-time effect compensation: [93] S. G. Jeong and M. H. Park, “The analysis and compensation of dead-time effects in PWM inverters,” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 108-114, 1991. [94] P. T. Cheng, H. C. Lin, and C. C. Hou, “An integrated pulse width modulator/dead-time generator with improved output voltage precision,” in Proc. IEEE IPEC, 2005, pp. 804-810. F. Energy Storage Systems [95] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES, 2013, pp.1-5. [96] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid,” in Proc. IEEE IFEEC, 2013, pp. 119-125. [97] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. Hoff, and O. Leitermann, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE IRE, 2014, vol. 102, no. 6, pp. 1014-1030. [98] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications,” in Proc. IEEE DUE, 2017, pp. 233-239. [99] N. Jabbour and C. Mademlis, “Supercapacitor-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, 2017. [100] E. Mohammadi, R. Rasoulinezhad, and G. Moschopoulos, “Using a supercapacitor to mitigate battery microcycles due to wind shear and tower shadow effects in wind-diesel microgrids,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3677-3689, Sept. 2020. [101] M. Z. Lu, Z. W. Guo, and C. M. Liaw, “A battery/supercapacitor hybrid powered EV SRM drive and microgrid incorporated operations,” IEEE Trans. Transport. Electrific., vol. 7, no. 4, pp. 2848-2863, Dec. 2021. G. DC/DC Converters Typical DC/DC converters: [102] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389. [103] M. R. Banaei and H. A. F. Bonab, “A novel structure for single-switch nonisolated transformerless buck–boost DC–DC converter,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 198-205, Jan. 2017. [104] O. A. Beg, H. Abbas, T. T. Johnson, and A. Davoudi, “Model validation of PWM DC–DC converters,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7049-7059, Sept. 2017. [105] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997- 118019, 2019. [106] Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie, and F. Blaabjerg, “Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1205-1221, 2021. Isolated converters: [107] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, Mar. 2012. [108] Peiwen He and A. Khaligh, “Design of 1 kW bidirectional half-bridge CLLC converter for electric vehicle charging systems,” in Proc. IEEE PEDES, 2016, pp. 1-6. [109] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015. [110] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, March 2017. [111] Y. Shang, B. Xia, C. Zhang, N. Cui, J. Yang, and C. Mi, “An automatic equalizer based on forward-flyback converter for series-connected battery strings,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5380–5391, Jul. 2017. [112] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998- 1005, March-April 2018. [113] W. L. Malan, D. M. Vilathgamuwa, and G. R. Walker, “Modeling and control of a resonant dual active bridge with a tuned CLLC network,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7297-7310, Oct. 2016. [114] Y. C. Liu, C. Chen, K. D. Chen, Y. L. Syu, and N. A. Dung, “High-frequency and high-efficiency isolated two-stage bidirectional DC–DC converter for residential energy storage systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 3, pp. 1994- 2006, Sept. 2020. [115] S. Zou, A. Mallik, J. Lu, and A. Khaligh, “Sliding mode control scheme for a CLLC resonant converter,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12274-12284, Dec. 2019. H. Others [116] H. Akagi, E. H. Watanabe, and M. Aredes, “The instantaneous power theory,” in Instant. Power Theory Appl. Power Cond. IEEE, 2007, pp. 41-107. [117] S. Heier, Grid Integration of Wind Energy Conversion System, 3nd Ed., John Wiley & Sons, Ltd., New York, 2014. [118] Badurek, Christopher A. “wind turbine,” Encyclopedia Britannica, 15 Nov. 2015. [119] Y. G. Lin, “Development of a position sensorless PMSM driven wind turbine emulator,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017. [120] W. Q. Huang, “Grid-connected electric vehicle induction motor drive system” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021. [121] H. P. Yeh, “Development of a wind permanent-magnet synchronous generator based dc microgrid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2022. |