帳號:guest(18.220.224.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳宇翔
作者(外文):Wu, Yu-Xiang
論文名稱(中文):具聯網和車互聯功能之風力永磁同步發電機為主直流微電網
論文名稱(外文):A WIND IPMSG BASED DC MICROGRID WITH GRID-CONNECTED AND VEHICLE-CONNECTED FUNCTIONS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
侯中權
口試委員(外文):Liu, Tian-Hua
Hou, Chung-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061510
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:125
中文關鍵詞:風力發電機風渦輪機模擬器內置磁石式永磁同步馬達內置磁石式永磁同步發電機直流微電網維也納切換式整流器最大功率點追蹤混合儲能系統微電網至電網/電網至微電網CLLC諧振轉換器微電網至電動車/電動車至微電網
外文關鍵詞:wind generatorwind turbine emulatorIPMSMIPMSGDC microgridVienna SMRmaximum power point trackinghybrid energy storage systemG2M/M2GCLLC resonant converterM2V/V2M
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文開發一風力內置磁石式永磁同步發電機為主之直流微電網,並從事微電網與電網及微電網與車輛之互聯操控。所研究之發電機以變頻供電內置磁石式永磁同步馬達驅動,在速度模式下做為傳統發電機之渦輪機。在轉矩模式下,以所設計之轉矩-速度與功率-速度曲線,成為忠實之風渦輪機模擬器,利於風力發電研究。
所建微電網之共同直流鏈電壓由發電機後接之三相T型維也納切換式整流器建立,在定速模式下,由所設計單週期控制、電壓平衡控制以及強健電壓控制,獲得升壓且穩健之直流鏈電壓。在轉矩模式下,應用擾動觀察法對風渦輪機驅動之發電機進行最大功率點追縱控制,以確保在任何負載下皆可淬取最大風能。最後也針對發電機發生故障下,所開發維也納切換式整流器之容錯操作性能測試。
接著建構一雙向併網變頻器,以施行微電網與電網間之雙向操作。微電網可傳送預設之實功及虛功功率至電網;當微電網能源不足時也能由電網提供能源支撐。由於風能不可測及不穩定,所建微電網設有蓄電池及超電容之混合儲能系統,改善電能供應品質。兩儲能裝置各經一雙向升-降壓轉換器介接至共同匯流排。
此外,為更有效利用微電網,本論文亦從事微電網與車輛之互聯操作。所用配備含一CLLC諧振轉換器作為微電網與電動車間之隔離,以及一單臂雙向升-降壓轉換器從事電動車電池之充放電操控。所有電力轉換均係全數位化控制,並以實測結果展現操控性能。
This thesis develops a wind interior permanent-magnet synchronous generator (IPMSG) based DC microgrid and performs its grid-connected and vehicle-connected operations. The studied generator is driven by an emulator inverter-fed interior permanent-magnet synchronous motor (IPMSM) drive. In constant speed mode, it can function as a conventional turbine. In torque mode, by designing torque-speed and power-speed curves, it can faithfully simulate the characteristics of the WTE, facilitating wind power research.
In the developed microgrid, the common DC-bus voltage is established by the wind IPMSG via the followed three-phase T-type Vienna boost switch-mode rectifier (SMR). In constant speed mode, the Vienna SMR boosted and well-regulated output voltage is yielded by applying one-cycle control (OCC), voltage balancing control and robust voltage control. In torque mode, the generator driven by the wind turbine is subject to maximum power point tracking (MPPT) through the perturb and observe (P&O) method to ensure the extraction of maximum wind energy under any load conditions. Finally, fault-tolerant testing was conducted on the developed Vienna SMR in the event of generator failure.
Next, a bidirectional grid-connected inverter is developed to achieve microgrid-to- grid (M2G) and grid-to-microgrid (G2M) bidirectional operations. The microgrid can send active and/or reactive powers to the utility grid, and accept energy support from the utility grid when the microgrid energy is insufficient. Due to the unpredictable nature of wind energy, a hybrid energy storage system (HESS) consisting of battery and super-capacitor (SC) is equipped to improve the power supplying quality. The one-leg bidirectional boost/buck converters are used as their interface converter.
In addition, the interconnected operation between microgrid and electric vehicle is conducted. The constituted schematics include CLLC resonant converter for isolation and a one-leg boost/buck EV battery for charging/discharging operation controls. All the power converters developed in this thesis are implemented digitally. And the operating characteristics are verified by measured results.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES viii
LIST OF TABLES xiv
LIST OF SYMBOLS xv
LIST OF ABBREVIATIONS xxvii
CHAPTER 1 INTRODUCTION 1
1.1 Motivation and Purposes 1
1.2 Literature Review 1
A. Microgrids 1
B. Wind Generator Systems 2
C. IPMSM Drives 2
D. Switch-mode Rectifiers (SMRs) 2
E. Inverters 3
F. Energy Storage Systems 3
G. DC/DC Converters 3
1.3 Organizations of this Thesis 4
CHAPTER 2 OVERVIEW OF MICROGRIDS AND PERMANENT-MAGNET SYSNCHRONOUS MACHINES 6
2.1 Introduction 6
2.2 Microgrids 6
2.3 Wind Power Generator System 7
A. Wind Turbine Structures 7
B. Power Generating Characteristics of Wind Turbine 7
C. Power Characteristics and MPPT 11
D. Typical Wind Generators 12
2.4 Synchronous Machines 13
A. Motor Structures 13
B. Governing Equations 14
C. Measurement of PMSM Key Parameters 17
2.5 Energy Storage Devices 19
A. Battery 19
B. Super-capacitor (SC) 19
2.6 Interface Converters 20
A. DC/DC Converters 20
B. Three-phase SMRs 21
CHAPTER 3 THE DEVELOPED WIND TURBINE EMULATOR 23
3.1 Introduction 23
3.2 Establishment of IPMSM Drive 23
A. Power Stage 23
B. Digital Control Environment 23
C. Sensing Circuits 26
D. Control Schemes 26
3.3 Experimental Evaluation of the Established IPMSM Drive 30
A. Steady-state Characteristics 30
B. Speed and Current Responses 30
3.4 Development of WTE 32
A. System Configuration 32
B. Torque Controller 33
C. Modeling of Wind Turbine Characteristics 34
D. Measured Results of the Developed WTE 36
CHAPTER 4 WIND IPMSG BASED DC MICROGRID 39
4.1 Introduction 39
4.2 The Developed Wind IPMSG System 39
A. System Configuration 39
B. Circuit Operation 40
C. Single-phase Equivalent Circuit Analysis 44
D. Power Circuit Components Design 45
E. Sensing Circuits 47
4.3 Control Scheme 48
A. Current Control Scheme 48
B. Voltage Control Scheme 49
C. Voltage Balancing Control Scheme 52
4.4 Experimental Evaluation for Turbine Emulator Driven Fixed-voltage IPMSG 52
A. Steady-state Characteristic 52
B. Dynamic Response 52
C. Voltage Balancing Control 54
D. Efficiency Assessment 55
4.5 Maximum Power Point Tracking Control of the Wind Turbine Emulator Driven IPMSG 56
A. MPPT Control Algorithms 56
B. Control Scheme 56
C. Measured Results 58
4.6 Fault-tolerant Operation 61
A. IPMSG with Single-phase AC Input 61
B. Circuit Operation 62
C. Power Circuit Components 63
D. Control Schemes 64
E. Measured Results 64
CHAPTER 5 BIDIRECTIONAL GRID-CONNECTED INVERTER AND HYBRID ENERGY STORAGE SYSTEM 67
5.1 Introduction 67
5.2 Bidirectional Grid-connected Inverter 68
5.2.1 Power Circuit 68
A. Circuit Operation 68
B. Power Circuit Design 70
5.2.2 M2G Mode 72
A. System Configuration 72
B. Phase Locked Loop Mechanism 73
C. Current Control Scheme 74
D. Experimental Evaluation 76
5.2.3 G2M Mode 78
A. System Configuration 78
B. Voltage Control Scheme 79
C. Experimental Evaluation 80
5.3 Hybrid Energy Storage System 82
5.3.1 Energy Storage Devices 82
A. The Employed Battery 82
B. The Employed Super-capacitor 82
5.3.2 Battery Interface Converter 82
A. Power Circuit Components 83
B. Control Schemes 84
C. Experimental Evaluation 90
5.3.3 SC Interface Converter 92
A. System Configuration 92
B. Power Circuit Components 93
C. Control Schemes 95
D. Experimental Evaluation 95
CHAPTER 6 OVERALL SYSTEM OPERATION OF THE ESTABLISHED DC MICROGRID 98
6.1 Introduction 98
6.2 System Components 98
6.3 Experimental Evaluation of the Established DC Microgrid 99
A. M2G Operation 99
B. Microgrid Battery Charging 101
C. G2M Operation 101
6.4 Wind Energy Shortage Scenarios 102
A. Wind IPMSG + HESS 102
B. Wind IPMSG + Grid-connected Inverter 102
6.5 Half-bridge CLLC Resonant Converter and M2V/V2M Operations 104
6.5.1 Half-bridge CLLC Resonant Converter 104
A. System Configuration 104
B. Operation Principle 105
C. Design of High Frequency Transformer 109
D. Control Scheme 110
E. Experimental Evaluation 111
6.5.2 M2V/V2M Operation 113
A. System Configuration 113
B. Experimental Evaluation 114
CHAPTER 7 CONCLUSION 116
REFERENCES 117
A. Microgrids
[1] V. Nasirian, S. Moayedi, A. Davoudi, and F. L. Lewis, “Distributed cooperative control of DC microgrids,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2288-2303, 2015.
[2] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[3] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
[4] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
[5] J. Wang, C. Jin, and P. Wang, “A uniform control strategy for the interlinking converter in hierarchical controlled hybrid AC/DC microgrids,” IEEE Trans. Ind. Electron., vol. 65, no. 8, pp. 6188-6197, Aug. 2018.
[6] S. Liu, R. Li, K. Huang, X. Li, W. Fang, and X. Liu, “A multivariable hysteresis-based DC bus signaling control for DC microgrid with enhanced reliability,” in Proc. IEEE ICDCM, pp. 1-6, 2019.
[7] C. Yu, H. Zhou, X. Lu, J. Lai, and G. P. Liu, “Distributed optimal synchronization rate control for AC microgrids under event-triggered mechanism,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 1780-1793, 2021.
[8] A. Navas-Fonseca, C. Burgos-Mellado, J. S. Gómez, F. Donoso, L. Tarisciotti, D. Sáez, R. Cárdenas, M. Sumner, “Distributed predictive secondary control for imbalance sharing in AC microgrids,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp. 20-37, Jan. 2022.
[9] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON, 2010, pp. 3034-3039.
[10] H. Kakigano, Y. Miura, and T. Ise, “Low-voltage bipolar-type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
B. Wind Generator Systems
[11] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859-1875, 2009.
[12] F. Blaabjerg, M. Liserre, and K. Ma, “Power electronics converters for wind turbine systems,” IEEE Trans. Ind. Appl, vol. 48, no. 2, pp. 708-719, 2012.
[13] K. Xie, Z. Jiang, and W. Li, “Effect of wind speed on wind turbine power converter reliability,” IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 96-104, March 2012.
[14] F. Blaabjerg and K. Ma, “Wind energy systems,” in Proc. IEEE IRE, 2017, vol. 105, no. 11, pp. 2116-2131.
IPMSGs:
[15] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent magnet synchronous generator- based standalone wind energy supply system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011.
[16] H. Karimi-Davijani and O. Ojo, “Optimum control of grid connected interior permanent magnet wind turbine generator,” in Proc. IEEE ECCE, 2012, pp. 3764-3771.
[17] P. Roshanfekr, T. Thiringer, and M. Alatalo, “Performance of two 5 MW permanent magnet wind turbine generators using surface mounted and interior mounted magnets,” in Proc. IEEE ICEM, 2012, pp. 1041-1047.
[18] M. E. Haque, Y. C. Saw, and M. M. Chowdhury, “Advanced control scheme for an IPM synchronous generator-based gearless variable speed wind turbine,” IEEE Trans. Sustain. Energy, vol. 5, no. 2, pp. 354-362, April 2014.
[19] K. W. Hu and C. M. Liaw, “Development of a wind interior permanent-magnet synchronous generator-based microgrid and its operation control,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4973-4985, 2015.
Wind turbine emulators:
[20] J. M. Nye, J. G. de la Bat, M. A. Khan, and P. Barendse, “Design and implementation of a variable speed wind turbine emulator,” in Proc. IEEE ICEM, 2012, pp. 2060-2065.
[21] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES, 2012, pp. 5827-5832.
[22] D. W. Choi, S. I. Byun, and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1-4, Jan. 2014.
[23] J. S. Lee and K. B. Lee, “Open-circuit fault-tolerant control for outer switches of three-level rectifiers in wind turbine systems,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3806-3815, May 2016.
[24] T. A. d. S. Barros, P. J. d. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, Nov. 2017.
[25] J. M. Guerrero, C. Lumbreras, D. D. Reigosa, P. Garcia, and F. Briz, “Control and emulation of small wind turbines using torque estimators,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 4863-4876, 2017.
[26] P. Chen, K. Hu, Y. Lin, and C. Liaw, “Development of a prime mover emulator using a permanent-magnet synchronous motor drive,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6114-6125, 2018.
[27] J. Hussain and M. K. Mishra, “An efficient wind speed computation method using sliding mode observers in wind energy conversion system control applications,” IEEE Trans. Ind. Appl., vol. 56, no. 1, pp. 730-739, 2020.
Maximum power point tracking controls:
[28] A. K. Abdelsalam, A. M. Massoud, S. Ahmed, and P. N. Enjeti, “High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1010-1021, 2011.
[29] K. Nishida, T. Ahmed, and M. Nakaoka, “A cost-effective high-efficiency power conditioner with simple MPPT control algorithm for wind-power grid integration,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 893-900, March-April. 2011.
[30] Z. M. Dalala, Z. U. Zahid, W. S. Yu, and Y. H. Cho, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, 2013.
[31] M. Heydari and K. Smedley, “Comparison of maximum power point tracking methods for medium to high power wind energy systems,” in Proc. IEEE EPDC, 2015, pp. 184-189.
[32] J. Hussain and M. K. Mishra, “Adaptive maximum power point tracking control algorithm for wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 31, pp. 697-705, 2016.
[33] M. Nasir Uddin and N. Patel, “Maximum power point tracking control of IPMSG incorporating loss minimization and speed sensorless schemes for wind energy system,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1902-1912, March-April 2016.
[34] H. T. Do, T. D. Dang, H. V. A. Truong, and K. K. Ahn, “Maximum power point tracking and output power control on pressure coupling wind energy conversion system,” IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1316-1324, Feb. 2018.
C.IPMSM Drives
Physical modeling of IPMSM and analysis:
[35] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw, Inc., 1994.
[36] A. B. Proca, A. Keyhani, A. El-Antably, L. Wenzhe, and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 386-391, 2003.
[37] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, pp. 1045-1051.
[38] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, 2006.
[39] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013.
[40] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed. Canada: John Wiley and Sons, 2013.
[41] M. Onsal, B. Cumhur, Y. Demir, E. Yolacan, and M. Aydin, “Rotor design optimization of a new flux-assisted consequent pole spoke-type permanent magnet torque motor for low-speed applications,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, 2018.
[42] T. Y. Lee, M. K. Seo, Y. Y. Ko, Y. J. Kim, and S. Y. Jung, “Electromagnetic performances analysis of IPMSM according to the current control method under flux-weakening control region,” IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1-6, April 2018.
Speed controls:
[43] M. A. Rahman, D.M. Vilathgamuwa, M.N. Uddin, and K. J. Tseng, “Nonlinear control of interior permanent-magnet synchronous motor,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp. 408-416, 2003.
[44] Y. S. Kung and M. H. Tsai, “FPGA-based speed control IC for PMSM drive with adaptive fuzzy control,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2476-2486, Nov. 2007.
[45] M. M. I. Chy and M. N. Uddin, “Development and implementation of a new adaptive intelligent speed controller for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1106-1115, 2009.
[46] R. Errouissi, M. Ouhrouche, W. H. Chen, and A. M. Trzynadlowski, “Robust nonlinear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849-2858, 2012.
[47] M. Preindl and S. Bolognani, “Model predictive direct speed control with finite control set of PMSM drive systems,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 1007-1015, 2013.
[48] S. Gao, Y. Wei, D. Zhang, H. Qi, Y. Wei, and Z. Yang, “Model-free hybrid parallel predictive speed control based on ultralocal model of PMSM for electric vehicles,” IEEE Trans. Ind. Electron., vol. 69, no. 10, pp. 9739-9748, Oct. 2022.
Torque controls:
[49] S. B. Ozturk and H. A. Toliyat, “Direct torque and indirect flux control of brushless DC motor,” IEEE/ASME Trans. Mechatroics, vol. 16, no. 2, pp. 351-360, 2011.
[50] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382-2389, 2012.
[51] Y. S. Choi, H. H. Choi, and J. W. Jung, “Feedback linearization direct torque control with reduced torque and flux ripples for IPMSM drives,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3728-3737, 2016.
[52] A. Mora, Á. Orellana, J. Juliet, and R. Cárdenas, “Model predictive torque control for torque ripple compensation in variable-speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016.
[53] Z. Zhang, C. Wei, W. Qiao, and L. Qu, “Adaptive saturation controller-based direct torque control for permanent-magnet synchronous machines,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7112-7122, Oct. 2016.
[54] Y. Miao, H. Ge, M. Preindl, J. Ye, B. Cheng, and A. Emadi, “MTPA fitting and torque estimation technique based on a new flux-linkage model for interior-permanent-magnet synchronous machines,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5451-5460, 2017.
[55] A. Nasr, C. Gu, X. Wang, G. Buticchi, S. Bozhko, and C. Gerada, “Torque-performance improvement for direct torque-controlled PMSM drives based on duty-ratio regulation,” IEEE Trans. Power Electron., vol. 37, no. 1, pp. 749-760, Jan. 2022.
Current controls:
[56] M. N. Uddin, T. S. Radwan, G. H. George, and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
[57] M. Kadjoudj, M. E. H. Benbouzid, C. Ghennai, and D. Diallo, “A robust hybrid current control for permanent-magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 109-115, 2004.
[58] T. Türker, U. Buyukkeles, and A. F. Bakan, “A robust predictive current controller for PMSM drives,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3906-3914, 2016.
[59] F. Morel, L. S. Xuefang, J. M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2715-2728, 2009.
Commutation shift controls:
[60] G. H. Jang and M. G. Kim, “Optimal commutation of a BLDC motor by utilizing the symmetric terminal voltage,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3473-3475, 2006.
[61] J. Fang, W. Li, and H. Li, “Self-compensation of the commutation angle based on DC-Link current for high-speed brushless DC motors with low inductance,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 428-439, 2014.
[62] Y. S. Lin, K. W. Hu, T. H. Yeh, and C. M. Liaw, “An electric-vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol., vol. 65, pp. 4493-4504, 2016.
D. Switch-mode Rectifiers
AC/DC converter:
[63] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[64] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, May 2010.
[65] M. Liserre, R. Cárdenas, M. Molinas, and J. Rodriguez, “Overview of multi-MW wind turbines and wind parks,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081-1095, 2011
[66] K. W. Hu and C. M. Liaw, “Establishment of an IPMSG system with Vienna SMR and its applications to microgrids,” in Proc. IEEE IECON, 2013, pp. 1619-1626.
[67] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems- part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[68] T. B. Soeiro and J. W. Kolar, “Analysis of high-efficiency three-phase two- and three-level unidirectional hybrid rectifiers,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3589-3601, Sept. 2013.
[69] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[70] J. Lee and K. Lee, “A novel carrier-based PWM method for Vienna rectifier with a variable power factor,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 3-12, 2016.
[71] S. Yang, J. Park, and K. Lee, “A carrier-based PWM with synchronous switching technique for a Vienna rectifier,” in Proc. IEEE PECON, 2016, pp. 728-733.
[72] J. S. Lee and K. B. Lee, “Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4075-4084, June 2016.
[73] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of three-step and six-step PWM in average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7264-7272, Oct. 2016.
[74] J. Lee and K. Lee, “Predictive control of Vienna rectifiers for PMSG systems,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2580-2591, 2017.
[75] J. S. Lee and K. B. Lee, “Open-switch fault diagnosis and tolerant control methods for a Vienna rectifier using bi-directional switches,” in Proc. IEEE ECCE, 2018, pp. 4129-4134.
[76] J. H. Park, J. S. Lee, M. Y. Kim and K. B. Lee, “Diagnosis and tolerant control methods for an open-switch fault in a Vienna rectifier,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 7112-7125, Dec. 2021.
[77] Y. Yuan and Z. Zhang, “A single-phase Vienna rectifier with wide output voltage range,” IEEE Trans. Transport. Electrific., vol. 8, no. 3, pp. 3884-3895, Sept. 2022.
One-cycle control (OCC):
[78] Y. Li, X. Zha, F. Liu, and L. Bu, “Discrete-time one cycle control of Vienna rectifiers considering the dc-link neutral-point voltage balance,” in Proc. IEEE ECCE, 2013, pp. 3011-3018.
[79] T. Gao, S. Zhang, S. Zhang, and J. Zhao, “A dynamic model and modified one-cycle control of three-level front-end rectifier for neutral point voltage balance,” IEEE Access, vol. 5, pp. 2000-2010, 2017.
[80] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, p. 3375, 2019.
[81] C. Wang, H. Hu, H. Cheng, Z. Zhao, and J. Liu, “Voltage balancing control of cascaded single-phase Vienna converter based on one cycle control with unbalanced loads,” IEEE Access, vol. 8, pp. 95126-95136, 2020.
[82] B. Xu, K. Liu, X. Ran, Q. Huai, and S. Yang, “Model predictive duty cycle control for three-phase vienna rectifiers with reduced neutral-point voltage ripple under unbalanced DC links,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 5, pp. 5578-5590, Oct. 2022.
E. Inverters
[83] D. G. Holmes, “The significance of zero space vector placement for carrier-based PWM schemes,” IEEE Trans. Ind. Appl., vol. 32, no. 5, pp. 1122-1129, 1996.
[84] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage- source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[85] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[86] L. N. Amuda, B. J. Cardoso Filho, S. M. Silva, S. R. Silva, and A. S. A. C. Diniz, “Wide bandwidth single and three-phase PLL structures for grid-tied PV systems,” in Proc. IEEE PVSC, 2000, pp. 1660-16630.
[87] B. Shi, G. Venkataramanan, and N. Sharma, “Design considerations for reactive elements and control parameters for three phase boost rectifiers,” in Proc. IEEE IEMDC, 2005, pp. 1757-1764.
[88] Y. Chang and Y. Lai, “Parameter tuning method for digital power converter with predictive current-mode control,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2910-2919, 2009.
[89] M. Mohseni and S. M. Islam, “A new vector-based hysteresis current control scheme for three-phase PWM voltage-source inverters,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2299-2309, Sept. 2010.
[90] C. Hou and P. Cheng, “Experimental verification of the active front-end converters dynamic model and control designs,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1112-1118, 2011.
[91] J. A. Mueller, M. Rasheduzzaman, and J. W. Kimball, “A model modification process for grid-connected inverters used in islanded microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 240-250, March 2016.
[92] Y. Deng, Y. Wang, K. H. Teo, and R. G. Harley, “A simplified space vector modulation scheme for multilevel converters,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1873-1886, March 2016.
Dead-time effect compensation:
[93] S. G. Jeong and M. H. Park, “The analysis and compensation of dead-time effects in PWM inverters,” IEEE Trans. Ind. Electron., vol. 38, no. 2, pp. 108-114, 1991.
[94] P. T. Cheng, H. C. Lin, and C. C. Hou, “An integrated pulse width modulator/dead-time generator with improved output voltage precision,” in Proc. IEEE IPEC, 2005, pp. 804-810.
F. Energy Storage Systems
[95] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES, 2013, pp.1-5.
[96] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid,” in Proc. IEEE IFEEC, 2013, pp. 119-125.
[97] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. Hoff, and O. Leitermann, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE IRE, 2014, vol. 102, no. 6, pp. 1014-1030.
[98] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications,” in Proc. IEEE DUE, 2017, pp. 233-239.
[99] N. Jabbour and C. Mademlis, “Supercapacitor-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, 2017.
[100] E. Mohammadi, R. Rasoulinezhad, and G. Moschopoulos, “Using a supercapacitor to mitigate battery microcycles due to wind shear and tower shadow effects in wind-diesel microgrids,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 3677-3689, Sept. 2020.
[101] M. Z. Lu, Z. W. Guo, and C. M. Liaw, “A battery/supercapacitor hybrid powered EV SRM drive and microgrid incorporated operations,” IEEE Trans. Transport. Electrific., vol. 7, no. 4, pp. 2848-2863, Dec. 2021.
G. DC/DC Converters
Typical DC/DC converters:
[102] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[103] M. R. Banaei and H. A. F. Bonab, “A novel structure for single-switch nonisolated transformerless buck–boost DC–DC converter,” IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 198-205, Jan. 2017.
[104] O. A. Beg, H. Abbas, T. T. Johnson, and A. Davoudi, “Model validation of PWM DC–DC converters,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7049-7059, Sept. 2017.
[105] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997- 118019, 2019.
[106] Q. Xu, N. Vafamand, L. Chen, T. Dragičević, L. Xie, and F. Blaabjerg, “Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1205-1221, 2021.
Isolated converters:
[107] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, Mar. 2012.
[108] Peiwen He and A. Khaligh, “Design of 1 kW bidirectional half-bridge CLLC converter for electric vehicle charging systems,” in Proc. IEEE PEDES, 2016, pp. 1-6.
[109] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[110] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, March 2017.
[111] Y. Shang, B. Xia, C. Zhang, N. Cui, J. Yang, and C. Mi, “An automatic equalizer based on forward-flyback converter for series-connected battery strings,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5380–5391, Jul. 2017.
[112] S. Zou, J. Lu, A. Mallik, and A. Khaligh, “Bi-directional CLLC converter with synchronous rectification for plug-in electric vehicles,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 998- 1005, March-April 2018.
[113] W. L. Malan, D. M. Vilathgamuwa, and G. R. Walker, “Modeling and control of a resonant dual active bridge with a tuned CLLC network,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7297-7310, Oct. 2016.
[114] Y. C. Liu, C. Chen, K. D. Chen, Y. L. Syu, and N. A. Dung, “High-frequency and high-efficiency isolated two-stage bidirectional DC–DC converter for residential energy storage systems,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 3, pp. 1994- 2006, Sept. 2020.
[115] S. Zou, A. Mallik, J. Lu, and A. Khaligh, “Sliding mode control scheme for a CLLC resonant converter,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12274-12284, Dec. 2019.
H. Others
[116] H. Akagi, E. H. Watanabe, and M. Aredes, “The instantaneous power theory,” in Instant. Power Theory Appl. Power Cond. IEEE, 2007, pp. 41-107.
[117] S. Heier, Grid Integration of Wind Energy Conversion System, 3nd Ed., John Wiley & Sons, Ltd., New York, 2014.
[118] Badurek, Christopher A. “wind turbine,” Encyclopedia Britannica, 15 Nov. 2015.
[119] Y. G. Lin, “Development of a position sensorless PMSM driven wind turbine emulator,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017.
[120] W. Q. Huang, “Grid-connected electric vehicle induction motor drive system” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2021.
[121] H. P. Yeh, “Development of a wind permanent-magnet synchronous generator based dc microgrid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2022.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *