帳號:guest(3.143.203.36)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪煒哲
作者(外文):Hung, Wei-Che
論文名稱(中文):具相位鎖定與振動幅度補償超音波電源研製
論文名稱(外文):Development of an Ultrasonic Power Supply with Phase-Locked Loop and Vibration Amplitude Compensation
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):劉邦榮
李宗璘
陳裕愷
口試委員(外文):Liu, Pang-Jung
Lee, Tzung-Lin
Chen, Yu-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061509
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:112
中文關鍵詞:超音波電源頻率追蹤壓電陶瓷換能器非接觸式電能傳輸
外文關鍵詞:Ultrasonic power supplyfrequency trackingnon-contact power transmissionpiezoelectric ceramic transducer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究設計並開發一款具頻率自動追蹤與振動幅度補償功能的超音波電源,做為旋轉超音波加工系統供電核心。超音波電源分為電力級與控制級兩部分,電力級由前級降壓型轉換器與後級全橋變流電路所組成。前級負責將整流後的市電電壓降壓並穩壓;後級電路負責將降壓後的直流電壓轉為高頻交流電壓,再透過非接觸電能傳輸系統對換能器進行供電。控制級以Renesas生產的RX62T微控制器為主要控制核心,通過接收回授電路訊號,經分析和計算後調整PWM訊號控制電力級開關切換,改變系統輸出電壓與變流電路切換頻率。
在研究中,分析並探討壓電元件的多種類型、換能器結構、等效電路模型及阻抗特性,並利用阻抗分析儀對換能器進行等效電性參數量測。除換能器外,亦對非接觸式電能傳輸變壓器進行深入探索,成功推導出適用於隔離式耦合感應變壓器的數學公式與等效電路模型。根據這些模型對變壓器參數進行量測,為匹配電容的選擇提供科學依據。
在超音波加工系統中,換能器性能與超音波電源頻率自動追蹤能力有關,透過最大電流法與鎖相迴路法結合,系統能夠自動調整輸出頻率以匹配換能器諧振頻率。在加工時,換能器振動幅度可能因負載機械應力影響而降低,藉由調節換能器工作電壓可維持其振動幅度在一定範圍內。
本研究主要貢獻為:(1) 研製一部輸入電壓介於110~220 vrms,輸出電壓為10~100 Vdc,掃頻頻率為16 kHz~32 kHz的超音波電源,(2) 藉由微控制器RX62T實現鎖相迴路,使系統能追蹤換能器諧振頻率,(3) 透過偵測回授電流大小,判斷換能器振動幅度,並在其衰減時調整輸出電壓進行補償。
This research designs and develops an ultrasonic power supply with frequency auto-tracking and amplitude compensation functions, serving as the power core for a rotary ultrasonic machining system. The ultrasonic power supply consists of the power stage and the control stage. The power stage is made up of two parts: a buck converter and and a full-bridge inverter. The former is responsible for stepping down and stabilizing the rectified AC mains voltage. The latter is responsible for converting the stepped-down DC voltage into a high-frequency AC voltage, which then supplies power to the transducer through a non-contact energy transmission system. The control stage uses Renesas RX62T as a controller. By receiving signals of feedback circuit, the controller adjusts the PWM signals to control the switches after analysis and calculation, changing the system output voltage and inverter switching frequency.
During the research, we analyzed and explored various types of piezoelectric elements, transducer structures, equivalent circuit models, and impedance characteristics. Then, measure the equivalent electrical parameters of the transducer by using an impedance analyzer. In addition to the transducer, we also deeply explored the non-contact energy transmission transformer. The mathematical formula and equivalent circuit model of isolated coupling induction transformer are successfully derived. The transformer parameters are measured according to these models, which provide a scientific basis for selecting matching capacitors.
In the ultrasonic machining system, the performance of the transducer is related to the automatic frequency tracking ability of the ultrasonic power supply. Through the combination of the maximum current method and the phase-locked loop method, the system can automatically adjust the output frequency to match the resonant frequency of the transducer. During the machining process, the amplitude of the transducer may be reduced due to the mechanical stress of the load. By adjusting the working voltage of the transducer, its amplitude can be maintained within a certain range.
The major contributions of this thesis are: (1) development of an ultrasonic power supply with an input voltage of 110~220 vrms, an output voltage of 10~100 Vdc , and sweep frequency range of 16 kHz~32 kHz, (2) implementation of a phase-locked loop through the RX62T microcontroller, enabling the system to track the resonant frequency of the transducer, and (3) by detecting the feedback current, the vibration amplitude of the transducer being determined, and when it decays, the output voltage being adjusted for compensation.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 頻率自動追蹤 3
1.2.2 阻抗匹配 4
1.3 論文大綱 5
第二章 換能器與非接觸傳輸系統分析 6
2.1 壓電換能器 7
2.1.1 壓電材料 8
2.1.2 壓電效應 9
2.1.3 材料應用場合 12
2.1.4 常見壓電參數 15
2.2 超音波換能器 18
2.2.1 換能器組成結構 18
2.2.2 換能器機電等效電路與阻抗特性 21
2.2.3 換能器特徵頻率與特性 24
2.2.4 換能器振動幅度與電流的關係 25
2.2.5 換能器參數量測與模擬 26
2.3 非接觸傳輸系統電路模型 28
2.3.1 變壓器等效模型推導 29
2.3.2 變壓器參數量測 42
2.3.3 變壓器漏感對諧振點的影響 45
2.4 換能器阻抗匹配 46
2.4.1 單邊電容補償 46
2.4.2 雙邊電容補償 47
第三章 電路架構與動作原理 49
3.1 Buck 降壓型轉換器 49
3.1.1 連續導通模式 50
3.1.2 不連續導通模式 52
3.2 變流電路設計 55
3.2.1 Half-bridge半橋變流器 56
3.2.2 Push-Pull推挽式變流電路 56
3.2.3 Full-bridge全橋變流電路 57
3.3 頻率追蹤方法 59
3.3.1 最大電流追蹤法 59
3.3.2 鎖相迴路頻率追蹤方法 61
3.3.3 振動幅度補償對頻率追蹤的影響 63
第四章 系統周邊電路設計 65
4.1 輔助電源 65
4.2 電壓保護電路 66
4.3 直流鏈差動降壓電路 67
4.4 電流回授電路 68
4.5 全橋變流器驅動電路 68
4.6 微控制器輸出緩衝器 69
4.7 零交越偵測電路 70
第五章 系統架構與程式流程 72
5.1 系統軟體架構 72
5.2 微控制器RX62T簡介 73
5.3 控制流程 76
5.3.1 主程式控制流程 77
5.3.2 類比/數位中斷副程式 79
5.3.3 直流鏈電壓穩壓副程式 80
5.3.4 最大電流掃頻副程式 82
5.3.5 相位偵測副程式 83
5.3.6 數位濾波副程式 90
5.3.7 鎖相與振幅補償副程式 91
第六章 電路實測驗證 94
6.1 實體電路呈現 94
6.1.1 超音波電源 94
6.1.2 換能器 95
6.1.3 非接觸電能傳輸變壓器 96
6.2 實務考量 97
6.3 實驗結果 97
6.3.1 頻率自動追蹤 97
6.3.2 振動幅度補償 107
第七章 結論與未來研究方向 109
7.1 結論 109
7.2 未來研究方向 109
參考文獻 111

[1] 康仁科, 馬付建 和 董志剛, “難加工材料超聲輔助切削加工技術”, 航空製造技術,2012(16):46-49, 2012。
[2] 杭州嘉振超聲, “空化作用”, https://www.made-in-hc.com/faq/konghua
[3] 唐新星, “基於頻率自動跟蹤與振幅恒定控制的超聲電源研製”, 北京交通大學, 2014。
[4] 黃浩, “超聲輔助加工非接觸式電能傳輸系統仿真分析”, 大連理工學院, 2013。
[5] H. Zhou, J. Zhang, D. Yu, P. Feng, Z. Wu, and W. Cai, “Advances in Rotary Ultrasonic Machining System For Hard and Brittle Materials”, Journal of Advances in Mechanical Engineering, vol. 11, no. 12, 2019, doi: 10.1177/1687814019895929.
[6] T. Suzuki, Y. Mizutani, H. Ikeda, and H. Yoshida, “Impedance characteristic of ultrasonic transducer operated as load of MOSFET DC-to-RF power inverter”, Proceedings of the 1996 IEEE IECON. 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Taipei, Taiwan, 1996, pp. 987-990 vol.2, doi: 10.1109/IECON.1996.566012.
[7] X. Li and W. Zhu, “Design of the Ultrasonic Power Supply System Based on DDS”, Journal of Shanghai University of Electric Power, vol. 33, 2017.
[8] J. Jin, M. Yang, Y. Zhu, H. MI, and T. Yang, “Power Ultrasonic Amplitude Control Based on Dynamic Branch Current Detection”, Journal of Vibration, Measurement & Diagnosis, vol. 40, 2020.
[9] P. Du, J. Nan, and B. Song, “Study on Frequency Characteristics and Matching of Ultrasonic Transducer”, Audio Engineering, 2016.
[10] H. Shi, S. Kong, G. Gao, Z. Chen, and S. Liu, “Design and Fabrication of Impedance Matching Device For High Power Piezoelectric Ultrasonic Transducer Elements”, Journal of Electric Design Engineering, vol. 29, 2021, doi: 10.14022/j.issn1674-6236.2021.21.006.
[11] 林書玉, “超聲波換能器的原理及設計[M] ”, 科學出版社, 2003。
[12] 陳威志, “旋轉敲擊式壓電發電機之阻抗匹配轉換器之設計與實現”, 國立交通大學, 新竹市, 2009。
[13] 周卓明, “壓電力學”, 全華圖書股份有限公司, 2003。
[14] 百科知識, “超聲波變幅桿”, https://baike.baidu.com/item/%E8%B6%85%E5% A3%B0%E6%B3%A2%E5%8F%98%E5%B9%85%E6%9D%86/7070612
[15] Q. Ma, “The Echanism and Dynamic Analysis of New Ultrasonic Horn”, Northeastern University, 2015.
[16] W. Zhang, Z. Liu, C. Zhang, and F. Zhang, “Research Status and Development Trend of Rotary Ultrasonic Machining”, Journal of Machine Building & Automation, 2021.
[17] J. Zhang, “Theorectical and Experimentak research on Non-contact Power Supply of Rotary Ultrasonic Processing”, Guangdong University, China, 2016.
[18] J. Zhang, “Research on Compensation Optimization of Wireless Power Transmission”, Harbin Institute of Technology, 2019.
[19] C. Zuo, “Research on Parallel Resonant Frequency Automatic Tracking System of Ultrasonic Transducer”, Shanghai Jiao Tong University, 2016.
[20] 莫漢, 昂德蘭, 羅賓斯 和 江炫樟, “電力電子學”, 第三版,臺北市,全華, 2003。
[21] S. Hong and D. Bae, “Design of Half-Bridge Converter for High Frequency Ultrasonic Transducer”, Journal of Electrical Engineering and Technology, vol. 12, pp. 2834-2839., 2017.
[22] K. Yuan, “The Measurement and Matching of Power Ultrasonic Transducers”, Shanghai Jiao Tong University, 2015.
[23] Y. Hao, Y. Lu, J. Li, X. Huang, and J. Zhang, “Research on Ultrasonic Power Supply Based on Full-Bridge Inverter”, Journal of Physics: Conference Series, 2017.
[24] 游翼, “具頻率追蹤功能之超音波驅動器研製”, 國立清華大學, 新竹市, 2018。
[25] J. Luo, “Research on High-power Ultrasonic Power Supply and Application”, South China University of Technology, 2015.
[26] Texas Instruments, UC3843 Datasheet.
[27] ON Semiconductor, FAN7382 Datasheet.
[28] NXP Semiconductors, 74LHC365 Datasheet.
[29] Fairchild Semiconductor, LM393 Datasheet.
[30] Renesas Electronics, RX62T/62G Group Datasheet, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *