|
A. Renewable Energy and Microgrids Renewable Energy Sources: [1] C. Jin, X. Sheng and P. Ghosh, “Optimized electric vehicle charging with intermittent renewable energy sources,” IEEE J. Sel. Topics Signal Process, vol. 8, no. 6, pp. 1063-1072, Dec. 2014. [2] I. Das, K. Bhattacharya and C. Cañizares, “Optimal incentive design for targeted penetration of renewable energy sources,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1213-1225, Oct. 2014. [3] B. Kroposki, B. Johnson, Y. C. Zhang, V. Gevorgian, P. Denholm, B. Hodge, and B. Hannegan, “Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power Energy Mag., vol. 15, no. 2, pp. 61-73, March-April 2017. [4] O. Ogunrinde, E. Shittu and K. K. Dhanda, “Investing in renewable energy: reconciling regional policy with renewable energy growth,” IEEE Eng. Manag. Rev, vol. 46, no. 4, pp. 103-111, Dec. 2018. [5] A. Blakers, M. Stocks, B. Lu, C. Cheng, and R. Stocks, “Pathway to 100% renewable electricity,” IEEE J. Photovolt., vol. 9, no. 6, pp. 1828-1833, Nov. 2019. Microgrids: [6] D. E. Olivares, A. Mehrizi-San, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez- Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014. [7] L. Che, M. Shahidehpour, A. Alabdulwahab and Y. Al-Turki, “Hierarchical coordination of a community microgrid with AC and DC microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3042-3051, Nov. 2015. [8] M. Farrokhabadi, C. A. Cañizares, J. W. Simpson-Porco, E. Nasr, L. Fan, P. A. Mendoza-Araya, R. Tonkoski, U. Tamrakar, N. Hatziargyriou, D. Lagos, R. W. Wies, M. Paolone, M. Liserre, L. Meegahapola, M. Kabalan, A. H. Hajimiragha, D. Peralta , M. A. Elizondo, K. P. Schneider, F. K. Tuffner, and Jim Reilly, “Microgrid stability definitions, analysis, and examples,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 13-29, Jan. 2020. [9] J. Peng, B. Fan and W. Liu, “Voltage-based distributed optimal control for generation cost minimization and bounded bus voltage regulation in DC microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 106-116, Jan. 2021. Energy Storage Systems: [10] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014. [11] R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala and I. Gyuk, “Energy management and optimization methods for grid energy storage systems,” IEEE Access, vol. 6, pp. 13231-13260, 2018. [12] Q. Yan, B. Zhang and M. Kezunovic, “Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2096-2106, March 2019. Hybrid DC/AC Microgrids: [13] F. Nejabatkhah and Y. W. Li, “Overview of power management strategies of hybrid AC/DC microgrid,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7072-7089, Dec. 2015. [14] Z. Li and M. Shahidehpour, “Small-signal modeling and stability analysis of hybrid AC/DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2080-2095, March 2019. [15] Á. Navarro-Rodríguez, P. García, R. Georgious and J. García, “Adaptive active power sharing techniques for DC and AC voltage control in a hybrid DC/AC microgrid,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1106-1116, March-April 2019. Bipolar DC Microgrids: [16] G. V. d. Broeck, W. Martinez, M. Dalla Vecchia, S. Ravyts, and J. Driesen, “Conversion efficiency of the buck three-level DC-DC converter in unbalanced bipolar DC microgrids,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9306-9319, Sept. 2020. [17] V. F. Pires, A. Cordeiro, D. Foito, and J. F. A. Silva, “Dual output and high voltage gain DC-DC converter for PV and fuel cell generators connected to DC bipolar microgrids,” IEEE Access, vol. 9, pp. 157124-157133, 2021. [18] J. O. Lee, Y. S. Kim and S. I. Moon, “Current injection power flow analysis and optimal generation dispatch for bipolar DC microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 1918-1928, May 2021. [19] S. H. Kim, H. J. Byun, W. S. Jeong, J. Yi, and C. Y. Won, “Hierarchical control with voltage balancing and energy management for bipolar DC microgrid,” IEEE Trans. Ind. Electron., vol. 70, no. 9, pp. 9147-9157, Sept. 2023. B. Wind Power Generation System Wind Energy Development: [20] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Emerg. Sel. Topics in Power Electron., vol. 1, no. 3, pp. 139-152, Sept. 2013. [21] C. Huang, F. Li and Z. Jin, “Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2530-2539, April 2015. [22] E. Apostolaki-Iosifidou, R. Mccormack, W. Kempton, P. Mccoy, and D. Ozkan, “Transmission design and analysis for large-scale offshore wind energy development,” IEEE Power Energy Technol. Syst. J., vol. 6, no. 1, pp. 22-31, March 2019. Doubly-fed Induction Wind Generator: [23] Y. H. Lei, A. Mullane, G. Lightbody, and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 257-264, March 2006. [24] S. Shao, T. Long, E. Abdi, and R. A. McMahon, “Dynamic control of the brushless doubly fed Induction generator under unbalanced operation,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2465-2476, June 2013. [25] S. Ghosh, S. Kamalasadan, N. Senroy, and J. Enslin, “Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 1861-1871, May 2016. [26] G. D. Marques and M. F. Iacchetti, “DFIG topologies for DC networks: a review on control and design features,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1299-1316, Feb. 2019. Permanent-magnet Synchronous Wind Generator: [27] M. E. Haque, M. Negnevitsky and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 331-339, Jan.-Feb. 2010. [28] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A variable speed wind turbine control strategy to meet wind farm grid code requirements,” IEEE Trans. Power Syst. vol. 25, no. 1, pp. 331-340, Feb. 2010. [29] S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2325-2337, May 2012. [30] D. H. Kim, K. S. Kim, I. J. Yang, J. Lee, and W. H. Kim, “Alternative bridge spoke permanent magnet synchronous generator design for wind power generation systems,” IEEE Access, vol. 9, pp. 152819-152828, 2021. [31] F. Tatsuta, S. Nishikata and K. i. Yamashita, “Experimental studies on dynamic performances of wind power plants composed of series-connected wind generators and synchronous-compensator-commutated thyristor inverter,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4001-4008, July-Aug. 2021. [32] I. Jlassi and A. J. M. Cardoso, “Fault-tolerant back-to-back converter for direct-drive PMSG wind turbines using direct torque and power control techniques,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11215-11227, Nov. 2019. Wind Turbine Emulator: [33] S. H. Jangamshetti and V. Guruprasada Rau, “Normalized power curves as a tool for identification of optimum wind turbine generator parameters,” IEEE Trans. Energy Convers., vol. 16, no. 3, pp. 283-288, Sept. 2001. [34] Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 38-50, Jan. 2011. [35] Parikshit G. Jamdade, Santosh V. Patil, Vishal B Patil, “Assessment of power coefficient of an offline wind turbine generator system,” IJERT, Volume 02, Vol. 2 Issue 9, September 2013. [36] F. Huerta, R. L. Tello, and M. Prodanovic, “Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 1893-1904, March 2017. [37] L. K. Gan, J. K. H. Shek and M. A. Mueller, “Modeling and characterization of downwind tower shadow effects using a wind turbine emulator,” IEEE Trans. Power Electron., vol. 64, no. 9, pp. 7087-7097, Sept. 2017. [38] R. Azizipanah-Abarghooee, M. Malekpour, T. Dragičević, F. Blaabjerg, and V. Terzija, “A linear inertial response emulation for variable speed wind turbines,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1198-1208, March 2020. C. Switched-reluctance Motor [39] Y. Hasegawa, K. Nakamura and O. Ichinokura, “Optimization of a Switched Reluctance motor made of permendur,” IEEE Trans. Magn., vol. 46, no. 6, pp. 1311-1314, June 2010. [40] D. Lee, T. H. Pham, and J. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, Sept. 2013. [41] J. Ye, B. Bilgin, and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, June 2015. [42] V. Rallabandi, J. Wu, P. Zhou, D. G. Dorrell, and D. M. Ionel, “Optimal design of a switched reluctance motor with magnetically disconnected rotor modules using a design of experiments differential evolution FEA-based method,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, Nov. 2018. [43] T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, “Unified control for switched reluctance motors for wide speed operation,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3401-3411, May 2019. SRM Household Appliance: [44] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE Power Electronics Specialists Conference, 2008, pp. 1235-1241. [45] N. K. Dankadai, M. A. Elgendy, S. P. McDonald, D. J. Atkinson, and G. Atkinson, “Investigation of reliability and complexity of torque control for switched reluctance drives,” in Proc. IEEE PRERC, 2019, pp. 485-490. SRM Starter: [46] B. Fahimi, A Emadi, and R. B. Sepe, “A switched reluctance machine-based starter/ alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, March 2004. [47] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, Jan. 2009. [48] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, Feb. 2017. [49] N. Apostolidou and N. Papanikolaou, “Vector control-based energy management system for switched reluctance starter/generators,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp. 11491-11503, Nov. 2022. Electric Vehicle Powered by SRM: [50] P. Krishnamurthy, W. Lu, F. Khorrami, and A. Keyhani, “Robust force control of an SRM-based electromechanical brake and experimental results,” IEEE Trans. Control Syst. Technol., vol. 17, no. 6, pp. 1306-1317, Nov. 2009. [51] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, July 2013. [52] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor, and A. Emadi, “Making the case for switched reluctance motors for propulsion applications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7172-7186, July 2020. Motor Structure Design: [53] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, Nov.-Dec. 2012. [54] A. D. Callegaro, B. Bilgin, and A. Emadi, “Radial force shaping for acoustic noise reduction in switched reluctance machines,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9866-9878, Oct. 2019. [55] N. Niguchi, K. N. Hirata, K. Takahara, and H. Suzuki, “Proposal of a new coil arrangement for a four-phase switched reluctance motor,” IEEE Trans. Magn., vol. 57, no. 2, pp. 1-6, Feb. 2021. Motor Mathematical Model: [56] I. Husain and S. A. Hossain, “Modeling, simulation, and control of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1625-1634, Dec. 2005. [57] S. Li, S. Zhang, T. G. Habetler and R. G. Harley, “A survey of electromagnetic — Thermal modeling and design optimization of switched reluctance machines,” in Proc. IEEE IEMDC, Miami, FL, USA, 2017. [58] S. Li, S. Zhang, T. G. Habetler, and R. G. Harley, “Modeling, design optimization, and applications of switched reluctance machines — a review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660-2681, May-June 2019. Motor Drive Control Strategies: [59] R. Krishnan, Sung-Yeul Park and Keunsoo Ha, “Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch-the lowest cost four-quadrant brushless motor drive,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 1047-1055, July-Aug. 2005. [60] C. Moron, A. Garcia, E. Tremps and J. A. Somolinos, “Torque control of switched reluctance motors,” IEEE Trans. Magn., vol. 48, no. 4, pp. 1661-1664, April 2012. [61] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, March 2015. [62] A. D. Cheok and Y. Fukuda, “A new torque and flux control method for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 543-557, July 2002. [63] S. Mehta, M. A. Kabir and I. Husain, “Extended speed current profiling algorithm for low torque ripple SRM using model predictive control,” in Proc. IEEE ECCE, Portland, OR, USA, 2018. [64] M. Kawa, K. Kiyota, J. Furqani, and A. Chiba, “Acoustic noise reduction of a high- efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2519-2528, May-June 2019. Commutation Shifting and Voltage Boosting: [65] J. Kim, K. Ha, and R. Krishnan, “Single-controllable-switch-based switched reluctance motor drive for low cost, variable-speed applications,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 379-387, Jan. 2012. [66] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, Jan. 2012. [67] H. Li, B. Bilgin, and A. Emadi, “An improved torque sharing function for torque ripple reduction in switched reluctance machines,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1635-1644, Feb. 2019. SRM Converters: [68] J. W. Ahn, S. J. Park, and D. H. Lee, “Hybrid excitation of SRM for reduction of vibration and acoustic noise,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 374-380, April 2004. [69] T. Ishikawa, Y. Hashimoto and N. Kurita, “Optimum design of a switched reluctance motor fed by asymmetric bridge converter using experimental design method,” IEEE Trans. Magn., vol. 50, no. 2, pp. 781-784, Feb. 2014. [70] W. Cai and F. Yi, “An integrated multiport power converter with small capacitance requirement for switched reluctance motor drive,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3016-3026, April 2016. [71] X. Deng, B. Mecrow, H. Wu, R. Martin, and Y. Gai, “Cost-effective and high-efficiency variable-speed switched reluctance drives with ring-connected winding configuration,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 120-129, March 2019. D. AC/DC Front-end Converter Single-phase SMR: [72] V. M. Rao, A. K. Jain, K. K. Reddy, and A. Behal, “Experimental comparison of digital implementations of single-phase PFC controllers,” IEEE Trans. Power Electron., vol. 55, no. 1, pp. 67-78, Jan. 2008. [73] F. Musavi, W. Eberle and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, July-Aug. 2011. [74] M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A ZVS interleaved boost AC/DC converter used in plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3513-3529, Aug. 2012. [75] F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 413-421, March 2012. [76] C. Marxgut, F. Krismer, D. Bortis, and J. W. Kolar, “Ultraflat interleaved triangular current mode (TCM) single-phase PFC rectifier,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 873-882, Feb. 2014. [77] Z. Chen, P. Davari, and H. Wang, “Single-phase bridgeless PFC topology derivation and performance benchmarking,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9238-9250, Sept. 2020. Three-phase SMR: [78] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems,” in Proc. IEEE NTELEC, Amsterdam, Netherlands, 2011, pp. 1-27. [79] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013. [80] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems - part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014. [81] R. N. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A review of passive power filters for three-phase grid-connected voltage-source converters,” IEEE Trans. Emerg. Sel. Topics in Power Electron., vol. 4, no. 1, pp. 54-69, March 2016. Swiss Buck SMR: [82] T. B. Soeiro, T. Friedli and J. W. Kolar, “Swiss rectifier — A novel three-phase buck-type PFC topology for electric vehicle battery charging,” in Proc. IEEE PEC, Orlando, FL, USA, 2012, pp. 2617-2624. [83] T. B. Soeiro, T. Friedli and J. W. Kolar, “Design and implementation of a three-phase buck-type third harmonic current injection PFC rectifier SR,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1608-1621, April 2013. [84] L. Schrittwieser, M. Leibl, M. Haider, F. Thöny, J. W. Kolar, and T. B. Soeiro, “99.3% efficient three-phase buck-type all-SiC Swiss rectifier for DC distribution systems,” IEEE Tran. Power Electron., vol. 34, no. 1, pp. 126-140, Jan. 2019. Proportional-integral Controller: [85] R. S. Rebeiro and M. N. Uddin, “Performance analysis of an FLC-based online adaptation of both hysteresis and PI controllers for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 12-19, Jan.-Feb. 2012. [86] R. Errouissi, A. Al-Durra and S. M. Muyeen, “Experimental validation of a novel PI speed controller for AC motor drives with improved transient performances,” IEEE Trans. Control Syst. Technol., vol. 26, no. 4, pp. 1414-1421, July 2018. [87] F. Tajaddodianfar, S. O. R. Moheimani and J. N. Randall, “Scanning tunneling microscope control: a self-tuning PI controller based on online local barrier height estimation,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5, pp. 2004-2015, Sept. 2019. Control Strategies for Improving Input Current Distortion: [88] L. Schrittwieser, J. W. Kolar and T. B. Soeiro, “Novel Swiss rectifier modulation scheme preventing input current distortions at sector boundaries,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5771-5785, July 2017. [89] R. Chen, Y. Yao, L. Zhao, and M. Xu, “Inhibiting mains current distortion for SWISS Rectifier - a three-phase buck-type harmonic current injection PFC converter,” in Proc. IEEE APEC, Charlotte, NC, USA, 2015, pp. 1850-1854. E. Maximum Power Point Tracking Strategy [90] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, April 2006. [91] S. M. R. Kazmi, H. Goto, H. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 29-36, Jan. 2011. [92] E. A. Amon, T. K. A. Brekken and A. A. Schacher, “Maximum power point tracking for ocean wave energy conversion,” IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 1079-1086, May-June 2012. [93] Y. Xia, K. H. Ahmed, and B. W. Williams, “Wind turbine power coefficient analysis of a new maximum power point tracking technique,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1122-1132, March 2013. [94] A. Sangwongwanich and F. Blaabjerg, “Mitigation of interharmonics in PV systems with maximum power point tracking modification,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8279-8282, Sept. 2019. F. Vienna SMR [95] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three- phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, vol.2, pp. 514-523. [96] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 456-467, Aug. 1997. [97] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich, and J. Pou, “Space vector modulator for Vienna-type rectifiers based on the equivalence between two and three-level converters: a carrier-based implementation,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888-1898, July 2008. [98] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Vienna-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, Nov. 2009. [99] J. Lee, K. Lee, and F. Blaabjerg, “Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12368-12383, Dec. 2019. Fault Tolerance: [100] U. Choi, K. Lee, and F. Blaabjerg, “Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 495-508, Jan.-Feb. 2014. [101] C. Cecati, A. O. Di Tommaso, F. Genduso, R. Miceli, and G. Ricco Galluzzo, “Comprehensive modeling and experimental testing of fault detection and management of a nonredundant fault-tolerant VSI,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3945-3954, June 2015. [102] U. Choi, J. Lee, F. Blaabjerg, and K. Lee, “Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7234-7247, Oct. 2016. One-cycle Control: [103] C. Qiao, T. Jin and K. M. Smedley, “One-cycle control of three-phase active power filter with vector operation,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 455-463, April 2004. [104] G. Chen and K. M. Smedley, “Steady-State and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, April 2005. [105] Y. Tang, P. C. Loh, P. Wang, and F. H. Choo, “One-cycle-controlled three-phase PWM rectifiers with improved regulation under unbalanced and distorted input-voltage conditions,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2786-2796, Nov. 2010. [106] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimized one-cycle control in photovoltaic grid connected applications,” IEEE Aerosp. Electron. Syst., vol. 42, no. 3, pp. 954-972, July 2006. G. Load Inverter and Microgrid Application Virtual Inertia: [107] M. Kayikci and J. V. Milanovic, “Dynamic contribution of DFIG-based wind plants to system frequency disturbances,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 859-867, May 2009. [108] G. Delille, B. Francois, and G. Malarange, “Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia,” IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 931-939, Oct. 2012. [109] M. F. M. Arani and E. F. El-Saadany, “Implementing virtual inertia in DFIG-based wind power generation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1373-1384, May 2013. [110] J. Fang, H. Li, Y. Tang, and F. Blaabjerg, “On the inertia of future more-electronics power systems,” IEEE Tran. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp. 2130-2146, Dec. 2019. [111] T. Kerdphol, F. S. Rahman, M. Watanabe, Y. Mitani, D. Turschner and H. P. Beck, “Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation,” IEEE Access, vol. 7, pp. 14422-14433, 2019. 1P3W Load Inverter/SMR: [112] R. I. Bojoi, L. R. Limongi, D. Roiu, and A. Tenconi, “Enhanced power quality control strategy for single-phase inverters in distributed generation systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 798-806, March 2011. [113] S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, “Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology,” IEEE Ind. Electron. Mag., vol. 9, no. 1, pp. 47-61, March 2015. [114] I. Serban, “Power decoupling method for single-phase H-bridge inverters with no additional power electronics,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4805-4813, Aug. 2015. [115] Y. Yang, K. Zhou and F. Blaabjerg, “Current harmonics from single-phase grid-connected inverters—examination and suppression,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 1, pp. 221-233, March 2016. [116] V. Purba, B. B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo, and S. V. Dhople, “Reduced-order aggregate model for parallel-connected single-phase inverters,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 824-837, June 2019. M2H Operation: [117] E. Rodriguez-Diaz, J. C. Vasquez, and J. M. Guerrero, “Intelligent DC homes in future sustainable energy systems: when efficiency and intelligence work together,” IEEE Consum. Electron. Mag., vol. 5, no. 1, pp. 74-80, Jan. 2016. [118] F. Luo, G. Ranzi, S. Wang, and Z. Y. Dong, “Hierarchical energy management system for home microgrids,” IEEE Trans. Smart Grid., vol. 10, no. 5, pp. 5536-5546, Sept. 2019. [119] A. Ahmad and J. Y. Khan, “Roof-top stand-alone PV micro-grid: a joint real-time BES management, load scheduling and energy procurement from a peaker generator,” IEEE Trans. Smart Grid., vol. 10, no. 4, pp. 3895-3909, July 2019. M2G Operation: [120] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011. [121] R. H. Lasseter, “Smart distribution: coupled microgrids,” in Proc. IEEE, vol. 99, no. 6, pp. 1074-1082, June 2011. [122] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, “The future renewable electric energy delivery and management (FREEDM) system: the energy internet,” in Proc. IEEE, vol. 99, no. 1, pp. 133-148, Jan. 2011. [123] H. Ali, A. Hussain, V. H. Bui, and H. M. Kim, “Consensus algorithm-based distributed operation of microgrids during grid-connected and islanded modes,” IEEE Access, vol. 8, pp. 78151-78165, 2020 G2M Operation: [124] J. M. Sohn, “Generation applications package for combined heat power in on-grid and off-grid microgrid energy management system,” IEEE Access, vol. 4, pp. 3444-3453, 2016. [125] H. S. Ko, M. S. Jang, K. S. Ryu, D. J. Kim, and B. K. Kim, “Supervisory power quality control scheme for a grid-off microgrid,” IEEE Trans. Sustain. Energy., vol. 9, no. 3, pp. 1003-1010, July 2018. [126] S. D'silva, M. Shadmand, S. Bayhan, and H. Abu-Rub, “Towards grid of microgrids: seamless transition between grid-connected and islanded modes of operation,” IEEE J. Electron. Soc., vol. 1, pp. 66-81, 2020. H. Grid Synchronization Three-phase PLL: [127] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 584-592, March 2007. [128] F. Liccardo, P. Marino and G. Raimondo, “Robust and fast three-phase PLL tracking system,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 221-231, Jan. 2011. [129] Q. Zhong, P. Nguyen, Z. Ma, and W. Sheng, “Self-synchronized synchronverters: inverters without a dedicated synchronization unit,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 617-630, Feb. 2014. [130] M. Mirhosseini, J. Pou, V. G. Agelidis, E. Robles, and S. Ceballos, “A three-phase frequency-adaptive phase-locked loop for independent single-phase operation,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6255-6259, Dec. 2014. [131] H. Wu and X. Wang, “Design-oriented transient stability analysis of PLL-synchronized voltage-source converters,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3573-3589, April 2020. Second Order Generalized Integrator: [132] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new single-phase PLL structure based on second order generalized integrator,” in Proc. IEEE PESC, 2006. [133] P. Rodríguez, A. Luna, R. S. Muñoz-Aguilar, I. Etxeberria-Otadui, R. Teodorescu, and F. Blaabjerg, “A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 99-112, Jan. 2012. [134] S. Golestan, J. M. Guerrero, F. Musavi, and J. C. Vasquez, “Single-phase frequency-locked loops: a comprehensive review,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11791- 11812, Dec. 2019. [135] A. Sahoo, J. Ravishankar and C. Jones, “Phase-locked loop independent second-order generalized integrator for single-phase grid synchronization,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-9, 2021. Proportional-resonant Controller: [136] A. Vidal, F. D. Freijedo, A. G. Yepes, P. F. Comesaña, J. Malvar, Ó. López, and J. D. Gandoy, “Assessment and optimization of the transient response of proportional-resonant current controllers for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1367-1383, April 2013. [137] A. Kuperman, “Proportional-resonant current controllers design based on desired transient performance,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5341-5345, Oct. 2015. [138] K. Seifi and M. Moallem, “An adaptive PR controller for synchronizing grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2034-2043, March 2019. [139] F. Hans, W. Schumacher, S. F. Chou, and X. Wang, “Design of multifrequency proportional–resonant current controllers for voltage-source converters,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13573-13589, Dec. 2020.
|