帳號:guest(3.128.30.46)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何季展
作者(外文):Ho, Chi-Chang
論文名稱(中文):開關式磁阻馬達驅動風渦輪機模擬器及風力永磁同步發電機為主雙極性直流微電網之開發
論文名稱(外文):DEVELOPMENT OF SRM DRIVEN WIND TURBINE EMULATOR AND WIND SPMSG BASED BIPOLAR DC MICROGRID
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
侯中權
口試委員(外文):Liu, Tian-Hua
Hou, Chung-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061508
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:131
中文關鍵詞:微電網風力發電機風渦輪機模擬機切換式磁阻馬達永磁同步發電機瑞士降壓切換式整流器維也納整流器最大功率點追蹤雙極性直流微電網單週期控制負載變頻器控制微電網至電網電網至微電網
外文關鍵詞:Microgridwind generatorWTESRMPMSGSwiss SMRVienna SMRMPPTbipolar DC microgridOCCload invertercontrolM2GG2M
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發開關式磁阻馬達驅動之風渦輪機模擬器,及風力永磁同步發電機為主之雙極性直流微電網。首先,建構使用非對稱橋式轉換器之基本開關式磁阻馬達驅動系統,妥適設計轉子位置感測機構、換相機構、磁滯電流控制脈寬調制機構、及速度控制機構、獲得正常之操作及性能。為再增強馬達於廣速度範圍之驅動性能,採用換相移位及增壓控制,降低馬達繞組反電動勢之影響。在轉矩模式下,所開發風渦輪機模擬器可產出忠實之轉矩-速度及功率-速度特性曲線。在速度模式下,所開發之馬達驅動系統亦可作為傳統之定速渦輪機。
接著,為使馬達驅動系統由市電供電,考量本文所使用開關式磁阻馬達屬於低壓電機,使用所研製之瑞士降壓切換式整流器,採用比例積分控制器搭配鎖相迴路控制,建立馬達驅動系統合適之直流鏈電壓,同時也針對此整流器固有之輸入電流失真提出改善方案。
第三,開關式磁阻馬達帶動之風力永磁同步發電機,後接維也納整流器建立雙極性電壓之直流匯流排。採用單週期控制,在風力發電機所生變動之輸出電壓及頻率輸出下,具優良功率因數矯正功能及快速電壓動態調控響應特性,無需輸入電壓感測及複雜之乘法運算。進一步針對風渦輪機模擬器驅動之風力發電機,採用擾動觀察法進行最大功率點追蹤控制,擷取最大風能。
最後,於維也納整流器建立之雙極性直流匯流排,建構一單相三線負載變頻器。提供三種模式:(i) 微電網至家用負載模式,變頻器輸出單相220V/110V 60Hz電壓源,供給家用負載;(ii) 微電網至市電模式,將預設功率傳輸至市電;(iii) 市電至微電網模式,當風力發電量受限時,電網可對微電網提供能源支撐。控制方面採用比例諧振控制器,以獲得良好弦波電壓命令追控,於聯網模式加入奇次諧波電流比例諧振控制器,抑制奇次諧波影響並改善電力品質。

關鍵詞:微電網、風力發電機、風渦輪機模擬機、切換式磁阻馬達、永磁同步發電機、瑞士降壓切換式整流器、維也納整流器、最大功率點追蹤、雙極性直流微電網、單週期控制、負載變頻器、控制、微電網至電網、電網至微電網。
This thesis is emphasized on the development of switched reluctance motor (SRM) driven wind turbine emulator (WTE) and wind surface-mounted permanent-magnet synchronous generator (SPMSG) based bipolar DC microgrid. First, the basic SRM drive with asymmetric bridge converter is constructed. With the properly designed rotor position sensing scheme, commutation scheme, hysteresis current-controlled pulse-width modula- tion (HCCPWM) scheme and speed control scheme, normal operation and driving performance are achieved. To further enhance the performance, the commutation shifting and the voltage boosting approaches are employed to meet a wide range of operating conditions. In the torque mode, the developed wind turbine emulator accurately reproduces the designed turbine torque-speed and power-speed characteristic curves. In the speed mode, the developed motor drive can also simulate the operation of conventional fixed- speed turbines.
Next, the SRM drive is supplied by the utility grid. Considering that the SRM used in this thesis is a low-voltage (48V) machine, the Swiss buck switch-mode rectifier (SMR) is adopted. The basic proportional-integral (PI) controller with phase-locked loop (PLL) control is implemented to establish the appropriate DC-link voltage for the motor drive. Additionally, a solution is proposed to reduce the inherent input current distortion possessed by the Swiss SMR.
Thirdly, the SRM WTE driven wind SPMSG with Vienna SMR is constructed and used to establish the microgrid bipolar DC bus. The one-cycle control (OCC) is employed in the Vienna SMR control scheme, which provides power factor correction (PFC) and fast dynamic response characteristics. It eliminates the need for AC input voltage sensing and complex multiplication operations, making it suitable for handling the variable output voltage and frequency generated by the generator. Regarding the operation of driving the wind SPMSG using the wind turbine emulator, the perturb and observe (P&O) method is employed for maximum power point tracking (MPPT) control. This control approach enables the system to accurately track the maximum power point, allowing for the extraction of the maximum wind energy for efficient energy conversion.
Finally, a single-phase three-wire (1P3W) load inverter/SMR is constructed on the bipolar DC bus established by the Vienna SMR. Three operation modes are provided: (i) microgrid-to-home (M2H) mode, the microgrid supplies power to household appliances by utilizing a 1P3W load inverter to provide single-phase 220V/110V 60Hz utility-grade; (ii) microgrid-to-grid (M2G) mode, transferring the preset power to the utility grid; (iii) grid-to-microgrid (G2M) mode, providing energy support to the microgrid when wind power generation is limited. Proportional-resonant (PR) controller is employed for control, ensuring good sinusoidal voltage command tracking characteristics. In the grid-connected mode, odd-harmonic proportional resonant controllers are added to suppress the impact of odd harmonics and improve power quality.

Key words: Microgrid, wind generator, WTE, SRM, PMSG, Swiss SMR, Vienna SMR, MPPT, bipolar DC microgrid, OCC, load inverter, control, M2G, G2M.
LIST OF CONTENTS
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xv
LIST OF ABBREVIATION xvi
LIST OF SYMBOLS xx
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 OVERVIEW OF SOME TECHNOLOGIES 6
2.1 Introduction 6
2.2 Microgrids and Wind Generators 6
2.2.1 Microgrids 6
2.2.2 Wind Generator System 8
2.3 Switched Reluctance Motor 13
2.3.1 Motor Structure 13
2.3.2 Governing Equations 14
2.3.3 SRM Converters 15
2.3.4 Some Key Issues of SRM Drive 18
2.4 Permanent Magnet Synchronous Motor 19
2.4.1 Motor Structure 19
2.4.2 Governing Equations 21
2.4.3 Measurement of Motor Parameters 23
2.4.4 Key Issues of Wind PMSG 26
2.5 Switch-mode Rectifiers 26
2.6 DSP-based Experiment Environment 28
2.6.1 Sensing and Interfacing Circuits 28
2.6.2 Digital Signal Processor and Peripherals 30
CHAPTER 3 SWITCHED-RELUCTANCE MOTOR DRIVE BASED WIND TURBINE EMULATOR 32
3.1 Introduction 32
3.2 System Configuration 32
3.3 Control Scheme 33
3.3.1 Current Controller 33
3.3.2 Speed Control Mode for Conventional Turbine Emulator 34
3.3.3 Torque Control Mode for WTE 38
3.4 Measured Results 42
3.4.1 Current and Speed Tracking Characteristics 42
3.4.2 Commutation Shifting 45
3.4.3 Voltage Boosting 47
3.4.4 WTE Validation 49
CHAPTER 4 SWISS BUCK SMR FED SWITCHED-RELUCTANCE MOTOR DRIVEN WIND TURBINE EMULATOR 50
4.1 Introduction 50
4.2 Development of Swiss Buck SMR 50
4.2.1 Power Circuit 51
4.2.2 Circuit Operation 54
4.2.3 Control Scheme 57
4.3 Experimental Performance Evaluation 68
4.4 Swiss SMR Powered Wind Turbine Emulator 72
4.4.1 Steady-State Characteristic 72
4.4.2 Dynamic Response 73
4.4.3 Wind Turbine Emulator Operating Characteristics 73
CHAPTER 5 THE DEVELOPED GRID-CONNECTED BIPOLAR DC MICROGRID 75
5.1 Introduction 75
5.2 System Configuration of the Developed Microgrid 75
5.3 Wind SPMSG with Vienna SMR 75
5.3.1 Power Circuit 77
5.3.2 Control Scheme 85
5.3.3 Experimental Evaluation of Voltage Control Mode 88
5.3.4 Maximum Power Point Tracking Control of the Wind Turbine Emulator Driven SPMSG System 92
5.4 Single-phase Three-wire Load Inverter/SMR 97
5.4.1 Half-bridge Inverter 97
5.4.2 Full-bridge Inverter 100
5.5 M2H Operation via 1P3W Inverter 101
5.5.1 Control Scheme 101
5.5.2 Experimental Evaluation 105
5.6 M2G Operation via 1P3W Inverter 110
5.6.1 Control Scheme 110
5.6.2 Experimental Evaluation 111
5.7 G2M Operation via 1P3W SMR 114
5.7.1 Control Scheme 114
5.7.2 Experimental Evaluation 114
CHAPTER 6 CONCLUSIONS 118
REFERENCES 120

A. Renewable Energy and Microgrids
Renewable Energy Sources:
[1] C. Jin, X. Sheng and P. Ghosh, “Optimized electric vehicle charging with intermittent renewable energy sources,” IEEE J. Sel. Topics Signal Process, vol. 8, no. 6, pp. 1063-1072, Dec. 2014.
[2] I. Das, K. Bhattacharya and C. Cañizares, “Optimal incentive design for targeted penetration of renewable energy sources,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1213-1225, Oct. 2014.
[3] B. Kroposki, B. Johnson, Y. C. Zhang, V. Gevorgian, P. Denholm, B. Hodge, and B. Hannegan, “Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy,” IEEE Power Energy Mag., vol. 15, no. 2, pp. 61-73, March-April 2017.
[4] O. Ogunrinde, E. Shittu and K. K. Dhanda, “Investing in renewable energy: reconciling regional policy with renewable energy growth,” IEEE Eng. Manag. Rev, vol. 46, no. 4, pp. 103-111, Dec. 2018.
[5] A. Blakers, M. Stocks, B. Lu, C. Cheng, and R. Stocks, “Pathway to 100% renewable electricity,” IEEE J. Photovolt., vol. 9, no. 6, pp. 1828-1833, Nov. 2019.
Microgrids:
[6] D. E. Olivares, A. Mehrizi-San, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez- Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014.
[7] L. Che, M. Shahidehpour, A. Alabdulwahab and Y. Al-Turki, “Hierarchical coordination of a community microgrid with AC and DC microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3042-3051, Nov. 2015.
[8] M. Farrokhabadi, C. A. Cañizares, J. W. Simpson-Porco, E. Nasr, L. Fan, P. A. Mendoza-Araya, R. Tonkoski, U. Tamrakar, N. Hatziargyriou, D. Lagos, R. W. Wies, M. Paolone, M. Liserre, L. Meegahapola, M. Kabalan, A. H. Hajimiragha, D. Peralta , M. A. Elizondo, K. P. Schneider, F. K. Tuffner, and Jim Reilly, “Microgrid stability definitions, analysis, and examples,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 13-29, Jan. 2020.
[9] J. Peng, B. Fan and W. Liu, “Voltage-based distributed optimal control for generation cost minimization and bounded bus voltage regulation in DC microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 1, pp. 106-116, Jan. 2021.
Energy Storage Systems:
[10] M. T. Lawder, B. Suthar, P. W. C. Northrop, S. De, C. M. Hoff, O. Leitermann, M. L. Crow, S. Santhanagopalan, and V. R. Subramanian, “Battery energy storage system (BESS) and battery management system (BMS) for grid-scale applications,” in Proc. IEEE, vol. 102, no. 6, pp. 1014-1030, June 2014.
[11] R. H. Byrne, T. A. Nguyen, D. A. Copp, B. R. Chalamala and I. Gyuk, “Energy management and optimization methods for grid energy storage systems,” IEEE Access, vol. 6, pp. 13231-13260, 2018.
[12] Q. Yan, B. Zhang and M. Kezunovic, “Optimized operational cost reduction for an EV charging station integrated with battery energy storage and PV generation,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2096-2106, March 2019.
Hybrid DC/AC Microgrids:
[13] F. Nejabatkhah and Y. W. Li, “Overview of power management strategies of hybrid AC/DC microgrid,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7072-7089, Dec. 2015.
[14] Z. Li and M. Shahidehpour, “Small-signal modeling and stability analysis of hybrid AC/DC microgrids,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 2080-2095, March 2019.
[15] Á. Navarro-Rodríguez, P. García, R. Georgious and J. García, “Adaptive active power sharing techniques for DC and AC voltage control in a hybrid DC/AC microgrid,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1106-1116, March-April 2019.
Bipolar DC Microgrids:
[16] G. V. d. Broeck, W. Martinez, M. Dalla Vecchia, S. Ravyts, and J. Driesen, “Conversion efficiency of the buck three-level DC-DC converter in unbalanced bipolar DC microgrids,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9306-9319, Sept. 2020.
[17] V. F. Pires, A. Cordeiro, D. Foito, and J. F. A. Silva, “Dual output and high voltage gain DC-DC converter for PV and fuel cell generators connected to DC bipolar microgrids,” IEEE Access, vol. 9, pp. 157124-157133, 2021.
[18] J. O. Lee, Y. S. Kim and S. I. Moon, “Current injection power flow analysis and optimal generation dispatch for bipolar DC microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 3, pp. 1918-1928, May 2021.
[19] S. H. Kim, H. J. Byun, W. S. Jeong, J. Yi, and C. Y. Won, “Hierarchical control with voltage balancing and energy management for bipolar DC microgrid,” IEEE Trans. Ind. Electron., vol. 70, no. 9, pp. 9147-9157, Sept. 2023.
B. Wind Power Generation System
Wind Energy Development:
[20] F. Blaabjerg and K. Ma, “Future on power electronics for wind turbine systems,” IEEE Trans. Emerg. Sel. Topics in Power Electron., vol. 1, no. 3, pp. 139-152, Sept. 2013.
[21] C. Huang, F. Li and Z. Jin, “Maximum power point tracking strategy for large-scale wind generation systems considering wind turbine dynamics,” IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2530-2539, April 2015.
[22] E. Apostolaki-Iosifidou, R. Mccormack, W. Kempton, P. Mccoy, and D. Ozkan, “Transmission design and analysis for large-scale offshore wind energy development,” IEEE Power Energy Technol. Syst. J., vol. 6, no. 1, pp. 22-31, March 2019.
Doubly-fed Induction Wind Generator:
[23] Y. H. Lei, A. Mullane, G. Lightbody, and R. Yacamini, “Modeling of the wind turbine with a doubly fed induction generator for grid integration studies,” IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 257-264, March 2006.
[24] S. Shao, T. Long, E. Abdi, and R. A. McMahon, “Dynamic control of the brushless doubly fed Induction generator under unbalanced operation,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2465-2476, June 2013.
[25] S. Ghosh, S. Kamalasadan, N. Senroy, and J. Enslin, “Doubly fed induction generator (DFIG)-based wind farm control framework for primary frequency and inertial response application,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 1861-1871, May 2016.
[26] G. D. Marques and M. F. Iacchetti, “DFIG topologies for DC networks: a review on control and design features,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1299-1316, Feb. 2019.
Permanent-magnet Synchronous Wind Generator:
[27] M. E. Haque, M. Negnevitsky and K. M. Muttaqi, “A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator,” IEEE Trans. Ind. Appl., vol. 46, no. 1, pp. 331-339, Jan.-Feb. 2010.
[28] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A variable speed wind turbine control strategy to meet wind farm grid code requirements,” IEEE Trans. Power Syst. vol. 25, no. 1, pp. 331-340, Feb. 2010.
[29] S. Li, T. A. Haskew, R. P. Swatloski, and W. Gathings, “Optimal and direct-current vector control of direct-driven PMSG wind turbines,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2325-2337, May 2012.
[30] D. H. Kim, K. S. Kim, I. J. Yang, J. Lee, and W. H. Kim, “Alternative bridge spoke permanent magnet synchronous generator design for wind power generation systems,” IEEE Access, vol. 9, pp. 152819-152828, 2021.
[31] F. Tatsuta, S. Nishikata and K. i. Yamashita, “Experimental studies on dynamic performances of wind power plants composed of series-connected wind generators and synchronous-compensator-commutated thyristor inverter,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4001-4008, July-Aug. 2021.
[32] I. Jlassi and A. J. M. Cardoso, “Fault-tolerant back-to-back converter for direct-drive PMSG wind turbines using direct torque and power control techniques,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 11215-11227, Nov. 2019.
Wind Turbine Emulator:
[33] S. H. Jangamshetti and V. Guruprasada Rau, “Normalized power curves as a tool for identification of optimum wind turbine generator parameters,” IEEE Trans. Energy Convers., vol. 16, no. 3, pp. 283-288, Sept. 2001.
[34] Y. K. Tan and S. K. Panda, “Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 38-50, Jan. 2011.
[35] Parikshit G. Jamdade, Santosh V. Patil, Vishal B Patil, “Assessment of power coefficient of an offline wind turbine generator system,” IJERT, Volume 02, Vol. 2 Issue 9, September 2013.
[36] F. Huerta, R. L. Tello, and M. Prodanovic, “Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines,” IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 1893-1904, March 2017.
[37] L. K. Gan, J. K. H. Shek and M. A. Mueller, “Modeling and characterization of downwind tower shadow effects using a wind turbine emulator,” IEEE Trans. Power Electron., vol. 64, no. 9, pp. 7087-7097, Sept. 2017.
[38] R. Azizipanah-Abarghooee, M. Malekpour, T. Dragičević, F. Blaabjerg, and V. Terzija, “A linear inertial response emulation for variable speed wind turbines,” IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1198-1208, March 2020.
C. Switched-reluctance Motor
[39] Y. Hasegawa, K. Nakamura and O. Ichinokura, “Optimization of a Switched Reluctance motor made of permendur,” IEEE Trans. Magn., vol. 46, no. 6, pp. 1311-1314, June 2010.
[40] D. Lee, T. H. Pham, and J. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, Sept. 2013.
[41] J. Ye, B. Bilgin, and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, June 2015.
[42] V. Rallabandi, J. Wu, P. Zhou, D. G. Dorrell, and D. M. Ionel, “Optimal design of a switched reluctance motor with magnetically disconnected rotor modules using a design of experiments differential evolution FEA-based method,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, Nov. 2018.
[43] T. Husain, A. Elrayyah, Y. Sozer, and I. Husain, “Unified control for switched reluctance motors for wide speed operation,” IEEE Trans. Ind. Electron., vol. 66, no. 5, pp. 3401-3411, May 2019.
SRM Household Appliance:
[44] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE Power Electronics Specialists Conference, 2008, pp. 1235-1241.
[45] N. K. Dankadai, M. A. Elgendy, S. P. McDonald, D. J. Atkinson, and G. Atkinson, “Investigation of reliability and complexity of torque control for switched reluctance drives,” in Proc. IEEE PRERC, 2019, pp. 485-490.
SRM Starter:
[46] B. Fahimi, A Emadi, and R. B. Sepe, “A switched reluctance machine-based starter/ alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, March 2004.
[47] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, Jan. 2009.
[48] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, Feb. 2017.
[49] N. Apostolidou and N. Papanikolaou, “Vector control-based energy management system for switched reluctance starter/generators,” IEEE Trans. Veh. Technol., vol. 71, no. 11, pp. 11491-11503, Nov. 2022.
Electric Vehicle Powered by SRM:
[50] P. Krishnamurthy, W. Lu, F. Khorrami, and A. Keyhani, “Robust force control of an SRM-based electromechanical brake and experimental results,” IEEE Trans. Control Syst. Technol., vol. 17, no. 6, pp. 1306-1317, Nov. 2009.
[51] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, July 2013.
[52] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor, and A. Emadi, “Making the case for switched reluctance motors for propulsion applications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7172-7186, July 2020.
Motor Structure Design:
[53] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, Nov.-Dec. 2012.
[54] A. D. Callegaro, B. Bilgin, and A. Emadi, “Radial force shaping for acoustic noise reduction in switched reluctance machines,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 9866-9878, Oct. 2019.
[55] N. Niguchi, K. N. Hirata, K. Takahara, and H. Suzuki, “Proposal of a new coil arrangement for a four-phase switched reluctance motor,” IEEE Trans. Magn., vol. 57, no. 2, pp. 1-6, Feb. 2021.
Motor Mathematical Model:
[56] I. Husain and S. A. Hossain, “Modeling, simulation, and control of switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1625-1634, Dec. 2005.
[57] S. Li, S. Zhang, T. G. Habetler and R. G. Harley, “A survey of electromagnetic — Thermal modeling and design optimization of switched reluctance machines,” in Proc. IEEE IEMDC, Miami, FL, USA, 2017.
[58] S. Li, S. Zhang, T. G. Habetler, and R. G. Harley, “Modeling, design optimization, and applications of switched reluctance machines — a review,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2660-2681, May-June 2019.
Motor Drive Control Strategies:
[59] R. Krishnan, Sung-Yeul Park and Keunsoo Ha, “Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch-the lowest cost four-quadrant brushless motor drive,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 1047-1055, July-Aug. 2005.
[60] C. Moron, A. Garcia, E. Tremps and J. A. Somolinos, “Torque control of switched reluctance motors,” IEEE Trans. Magn., vol. 48, no. 4, pp. 1661-1664, April 2012.
[61] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, March 2015.
[62] A. D. Cheok and Y. Fukuda, “A new torque and flux control method for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 17, no. 4, pp. 543-557, July 2002.
[63] S. Mehta, M. A. Kabir and I. Husain, “Extended speed current profiling algorithm for low torque ripple SRM using model predictive control,” in Proc. IEEE ECCE, Portland, OR, USA, 2018.
[64] M. Kawa, K. Kiyota, J. Furqani, and A. Chiba, “Acoustic noise reduction of a high- efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2519-2528, May-June 2019.
Commutation Shifting and Voltage Boosting:
[65] J. Kim, K. Ha, and R. Krishnan, “Single-controllable-switch-based switched reluctance motor drive for low cost, variable-speed applications,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 379-387, Jan. 2012.
[66] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, Jan. 2012.
[67] H. Li, B. Bilgin, and A. Emadi, “An improved torque sharing function for torque ripple reduction in switched reluctance machines,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1635-1644, Feb. 2019.
SRM Converters:
[68] J. W. Ahn, S. J. Park, and D. H. Lee, “Hybrid excitation of SRM for reduction of vibration and acoustic noise,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 374-380, April 2004.
[69] T. Ishikawa, Y. Hashimoto and N. Kurita, “Optimum design of a switched reluctance motor fed by asymmetric bridge converter using experimental design method,” IEEE Trans. Magn., vol. 50, no. 2, pp. 781-784, Feb. 2014.
[70] W. Cai and F. Yi, “An integrated multiport power converter with small capacitance requirement for switched reluctance motor drive,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 3016-3026, April 2016.
[71] X. Deng, B. Mecrow, H. Wu, R. Martin, and Y. Gai, “Cost-effective and high-efficiency variable-speed switched reluctance drives with ring-connected winding configuration,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 120-129, March 2019.
D. AC/DC Front-end Converter
Single-phase SMR:
[72] V. M. Rao, A. K. Jain, K. K. Reddy, and A. Behal, “Experimental comparison of digital implementations of single-phase PFC controllers,” IEEE Trans. Power Electron., vol. 55, no. 1, pp. 67-78, Jan. 2008.
[73] F. Musavi, W. Eberle and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, July-Aug. 2011.
[74] M. Pahlevaninezhad, P. Das, J. Drobnik, P. K. Jain, and A. Bakhshai, “A ZVS interleaved boost AC/DC converter used in plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3513-3529, Aug. 2012.
[75] F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 413-421, March 2012.
[76] C. Marxgut, F. Krismer, D. Bortis, and J. W. Kolar, “Ultraflat interleaved triangular current mode (TCM) single-phase PFC rectifier,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 873-882, Feb. 2014.
[77] Z. Chen, P. Davari, and H. Wang, “Single-phase bridgeless PFC topology derivation and performance benchmarking,” IEEE Trans. Power Electron., vol. 35, no. 9, pp. 9238-9250, Sept. 2020.
Three-phase SMR:
[78] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems,” in Proc. IEEE NTELEC, Amsterdam, Netherlands, 2011, pp. 1-27.
[79] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
[80] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems - part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
[81] R. N. Beres, X. Wang, M. Liserre, F. Blaabjerg, and C. L. Bak, “A review of passive power filters for three-phase grid-connected voltage-source converters,” IEEE Trans. Emerg. Sel. Topics in Power Electron., vol. 4, no. 1, pp. 54-69, March 2016.
Swiss Buck SMR:
[82] T. B. Soeiro, T. Friedli and J. W. Kolar, “Swiss rectifier — A novel three-phase buck-type PFC topology for electric vehicle battery charging,” in Proc. IEEE PEC, Orlando, FL, USA, 2012, pp. 2617-2624.
[83] T. B. Soeiro, T. Friedli and J. W. Kolar, “Design and implementation of a three-phase buck-type third harmonic current injection PFC rectifier SR,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1608-1621, April 2013.
[84] L. Schrittwieser, M. Leibl, M. Haider, F. Thöny, J. W. Kolar, and T. B. Soeiro, “99.3% efficient three-phase buck-type all-SiC Swiss rectifier for DC distribution systems,” IEEE Tran. Power Electron., vol. 34, no. 1, pp. 126-140, Jan. 2019.
Proportional-integral Controller:
[85] R. S. Rebeiro and M. N. Uddin, “Performance analysis of an FLC-based online adaptation of both hysteresis and PI controllers for IPMSM drive,” IEEE Trans. Ind. Appl., vol. 48, no. 1, pp. 12-19, Jan.-Feb. 2012.
[86] R. Errouissi, A. Al-Durra and S. M. Muyeen, “Experimental validation of a novel PI speed controller for AC motor drives with improved transient performances,” IEEE Trans. Control Syst. Technol., vol. 26, no. 4, pp. 1414-1421, July 2018.
[87] F. Tajaddodianfar, S. O. R. Moheimani and J. N. Randall, “Scanning tunneling microscope control: a self-tuning PI controller based on online local barrier height estimation,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5, pp. 2004-2015, Sept. 2019.
Control Strategies for Improving Input Current Distortion:
[88] L. Schrittwieser, J. W. Kolar and T. B. Soeiro, “Novel Swiss rectifier modulation scheme preventing input current distortions at sector boundaries,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5771-5785, July 2017.
[89] R. Chen, Y. Yao, L. Zhao, and M. Xu, “Inhibiting mains current distortion for SWISS Rectifier - a three-phase buck-type harmonic current injection PFC converter,” in Proc. IEEE APEC, Charlotte, NC, USA, 2015, pp. 1850-1854.
E. Maximum Power Point Tracking Strategy
[90] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486-494, April 2006.
[91] S. M. R. Kazmi, H. Goto, H. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 29-36, Jan. 2011.
[92] E. A. Amon, T. K. A. Brekken and A. A. Schacher, “Maximum power point tracking for ocean wave energy conversion,” IEEE Trans. Ind. Appl., vol. 48, no. 3, pp. 1079-1086, May-June 2012.
[93] Y. Xia, K. H. Ahmed, and B. W. Williams, “Wind turbine power coefficient analysis of a new maximum power point tracking technique,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1122-1132, March 2013.
[94] A. Sangwongwanich and F. Blaabjerg, “Mitigation of interharmonics in PV systems with maximum power point tracking modification,” IEEE Trans. Power Electron., vol. 34, no. 9, pp. 8279-8282, Sept. 2019.
F. Vienna SMR
[95] J. W. Kolar, H. Ertl, and F. C. Zach, “Design and experimental investigation of a three- phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, vol.2, pp. 514-523.
[96] J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 456-467, Aug. 1997.
[97] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich, and J. Pou, “Space vector modulator for Vienna-type rectifiers based on the equivalence between two and three-level converters: a carrier-based implementation,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888-1898, July 2008.
[98] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang, and D. Zhang, “Vienna-type rectifiers considering the DC-link voltage balance,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[99] J. Lee, K. Lee, and F. Blaabjerg, “Predictive control with discrete space-vector modulation of Vienna rectifier for driving PMSG of wind turbine systems,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12368-12383, Dec. 2019.
Fault Tolerance:
[100] U. Choi, K. Lee, and F. Blaabjerg, “Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 495-508, Jan.-Feb. 2014.
[101] C. Cecati, A. O. Di Tommaso, F. Genduso, R. Miceli, and G. Ricco Galluzzo, “Comprehensive modeling and experimental testing of fault detection and management of a nonredundant fault-tolerant VSI,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3945-3954, June 2015.
[102] U. Choi, J. Lee, F. Blaabjerg, and K. Lee, “Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7234-7247, Oct. 2016.
One-cycle Control:
[103] C. Qiao, T. Jin and K. M. Smedley, “One-cycle control of three-phase active power filter with vector operation,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 455-463, April 2004.
[104] G. Chen and K. M. Smedley, “Steady-State and dynamic study of one-cycle-controlled three-phase power-factor correction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 355-362, April 2005.
[105] Y. Tang, P. C. Loh, P. Wang, and F. H. Choo, “One-cycle-controlled three-phase PWM rectifiers with improved regulation under unbalanced and distorted input-voltage conditions,” IEEE Trans. Power Electron., vol. 25, no. 11, pp. 2786-2796, Nov. 2010.
[106] N. Femia, D. Granozio, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimized one-cycle control in photovoltaic grid connected applications,” IEEE Aerosp. Electron. Syst., vol. 42, no. 3, pp. 954-972, July 2006.
G. Load Inverter and Microgrid Application
Virtual Inertia:
[107] M. Kayikci and J. V. Milanovic, “Dynamic contribution of DFIG-based wind plants to system frequency disturbances,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 859-867, May 2009.
[108] G. Delille, B. Francois, and G. Malarange, “Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system's inertia,” IEEE Trans. Sustain. Energy, vol. 3, no. 4, pp. 931-939, Oct. 2012.
[109] M. F. M. Arani and E. F. El-Saadany, “Implementing virtual inertia in DFIG-based wind power generation,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1373-1384, May 2013.
[110] J. Fang, H. Li, Y. Tang, and F. Blaabjerg, “On the inertia of future more-electronics power systems,” IEEE Tran. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp. 2130-2146, Dec. 2019.
[111] T. Kerdphol, F. S. Rahman, M. Watanabe, Y. Mitani, D. Turschner and H. P. Beck, “Enhanced virtual inertia control based on derivative technique to emulate simultaneous inertia and damping properties for microgrid frequency regulation,” IEEE Access, vol. 7, pp. 14422-14433, 2019.
1P3W Load Inverter/SMR:
[112] R. I. Bojoi, L. R. Limongi, D. Roiu, and A. Tenconi, “Enhanced power quality control strategy for single-phase inverters in distributed generation systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 798-806, March 2011.
[113] S. Kouro, J. I. Leon, D. Vinnikov, and L. G. Franquelo, “Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology,” IEEE Ind. Electron. Mag., vol. 9, no. 1, pp. 47-61, March 2015.
[114] I. Serban, “Power decoupling method for single-phase H-bridge inverters with no additional power electronics,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4805-4813, Aug. 2015.
[115] Y. Yang, K. Zhou and F. Blaabjerg, “Current harmonics from single-phase grid-connected inverters—examination and suppression,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 1, pp. 221-233, March 2016.
[116] V. Purba, B. B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo, and S. V. Dhople, “Reduced-order aggregate model for parallel-connected single-phase inverters,” IEEE Trans. Energy Convers., vol. 34, no. 2, pp. 824-837, June 2019.
M2H Operation:
[117] E. Rodriguez-Diaz, J. C. Vasquez, and J. M. Guerrero, “Intelligent DC homes in future sustainable energy systems: when efficiency and intelligence work together,” IEEE Consum. Electron. Mag., vol. 5, no. 1, pp. 74-80, Jan. 2016.
[118] F. Luo, G. Ranzi, S. Wang, and Z. Y. Dong, “Hierarchical energy management system for home microgrids,” IEEE Trans. Smart Grid., vol. 10, no. 5, pp. 5536-5546, Sept. 2019.
[119] A. Ahmad and J. Y. Khan, “Roof-top stand-alone PV micro-grid: a joint real-time BES management, load scheduling and energy procurement from a peaker generator,” IEEE Trans. Smart Grid., vol. 10, no. 4, pp. 3895-3909, July 2019.
M2G Operation:
[120] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids - a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[121] R. H. Lasseter, “Smart distribution: coupled microgrids,” in Proc. IEEE, vol. 99, no. 6, pp. 1074-1082, June 2011.
[122] A. Q. Huang, M. L. Crow, G. T. Heydt, J. P. Zheng, and S. J. Dale, “The future renewable electric energy delivery and management (FREEDM) system: the energy internet,” in Proc. IEEE, vol. 99, no. 1, pp. 133-148, Jan. 2011.
[123] H. Ali, A. Hussain, V. H. Bui, and H. M. Kim, “Consensus algorithm-based distributed operation of microgrids during grid-connected and islanded modes,” IEEE Access, vol. 8, pp. 78151-78165, 2020
G2M Operation:
[124] J. M. Sohn, “Generation applications package for combined heat power in on-grid and off-grid microgrid energy management system,” IEEE Access, vol. 4, pp. 3444-3453, 2016.
[125] H. S. Ko, M. S. Jang, K. S. Ryu, D. J. Kim, and B. K. Kim, “Supervisory power quality control scheme for a grid-off microgrid,” IEEE Trans. Sustain. Energy., vol. 9, no. 3, pp. 1003-1010, July 2018.
[126] S. D'silva, M. Shadmand, S. Bayhan, and H. Abu-Rub, “Towards grid of microgrids: seamless transition between grid-connected and islanded modes of operation,” IEEE J. Electron. Soc., vol. 1, pp. 66-81, 2020.
H. Grid Synchronization
Three-phase PLL:
[127] P. Rodriguez, J. Pou, J. Bergas, J. I. Candela, R. P. Burgos, and D. Boroyevich, “Decoupled double synchronous reference frame PLL for power converters control,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 584-592, March 2007.
[128] F. Liccardo, P. Marino and G. Raimondo, “Robust and fast three-phase PLL tracking system,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 221-231, Jan. 2011.
[129] Q. Zhong, P. Nguyen, Z. Ma, and W. Sheng, “Self-synchronized synchronverters: inverters without a dedicated synchronization unit,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 617-630, Feb. 2014.
[130] M. Mirhosseini, J. Pou, V. G. Agelidis, E. Robles, and S. Ceballos, “A three-phase frequency-adaptive phase-locked loop for independent single-phase operation,” IEEE Trans. Power Electron., vol. 29, no. 12, pp. 6255-6259, Dec. 2014.
[131] H. Wu and X. Wang, “Design-oriented transient stability analysis of PLL-synchronized voltage-source converters,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3573-3589, April 2020.
Second Order Generalized Integrator:
[132] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new single-phase PLL structure based on second order generalized integrator,” in Proc. IEEE PESC, 2006.
[133] P. Rodríguez, A. Luna, R. S. Muñoz-Aguilar, I. Etxeberria-Otadui, R. Teodorescu, and F. Blaabjerg, “A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 99-112, Jan. 2012.
[134] S. Golestan, J. M. Guerrero, F. Musavi, and J. C. Vasquez, “Single-phase frequency-locked loops: a comprehensive review,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 11791- 11812, Dec. 2019.
[135] A. Sahoo, J. Ravishankar and C. Jones, “Phase-locked loop independent second-order generalized integrator for single-phase grid synchronization,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1-9, 2021.
Proportional-resonant Controller:
[136] A. Vidal, F. D. Freijedo, A. G. Yepes, P. F. Comesaña, J. Malvar, Ó. López, and J. D. Gandoy, “Assessment and optimization of the transient response of proportional-resonant current controllers for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1367-1383, April 2013.
[137] A. Kuperman, “Proportional-resonant current controllers design based on desired transient performance,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5341-5345, Oct. 2015.
[138] K. Seifi and M. Moallem, “An adaptive PR controller for synchronizing grid-connected inverters,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2034-2043, March 2019.
[139] F. Hans, W. Schumacher, S. F. Chou, and X. Wang, “Design of multifrequency proportional–resonant current controllers for voltage-source converters,” IEEE Trans. Power Electron., vol. 35, no. 12, pp. 13573-13589, Dec. 2020.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *