帳號:guest(3.15.186.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):顧唯楷
作者(外文):Gu, Wei-Kai
論文名稱(中文):具電網/微電網及車間互聯操控功能之電動車切換式磁阻馬達驅動系統
論文名稱(外文):AN EV SRM DRIVE WITH INCORPORATED OPERATION CAPABILITIES TO GRID/MICROGRID AND VEHICLE
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):劉添華
侯中權
口試委員(外文):Liu, Tian-Hua
Hou, Chung-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061507
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:130
中文關鍵詞:電動車切換式磁阻馬達電池介面轉換器諧振轉換器切換式整流器變頻器電網至車輛車輛至電網車輛至車輛微電網至車輛車輛至微電網
外文關鍵詞:EVSRMbatteryinterface converterresonant converterSMRinverterG2VV2GV2VM2VV2M
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一電動車切換式磁阻馬達驅動系統,具與電網、微電網及車對車互聯操控功能。車載電池經由交錯式雙向升/降壓介面轉換器建立馬達驅動系統之直流鏈電壓,具故障容錯能力及降低電流漣波。而可變之直流鏈電壓,在廣速度範圍下,能增進馬達驅動性能並減少電池耗能。在所建之切換式磁阻馬達驅動系統,經妥善設計之電流控制架構、速度控制架構及自動換相角移位機制,獲得良好驅動特性。馬達減速時,回收之再生煞車電能可經雙向介面轉換器充至電池。另外在直流鏈上裝設一動態煞車臂,避免再生煞車失效所致之直流鏈過壓。
當電動車在閒置時,利用所建隔離充電器可進行電網至車輛操控。三相或單相市電可經由切換式整流器及 CLLC 諧振轉換器對車載電池充電。切換式整流器提供高功率因數及低諧波成份,而高效率 CLLC 諧振轉換器提供必要之電氣隔離。由於切換式整流器與 CLLC 諧振轉換器均具雙向功率能力,相同之轉換器可執行反向車輛至電網操作。電動車可作為一可移動或分散式儲能裝置,傳送電能至三相電網。
最後,介紹所提之車輛與車輛及車輛與微電網間之互聯操控。由車輛至車輛操作,可供給電能給鄰車,對電池儲能耗盡之車輛提供緊急充電之道路救援。此外,微電網至車輛及車輛至微電網之雙向操作亦可施行。微電網可對車輛進行車載電池輔助充電,而反之,車輛可對微電網放電提供能源支撐。車輛與微電網之互聯,具有穩定微電網作用,以及有效利用車載電池之儲能。
This thesis develops an electric vehicle (EV) switched-reluctance motor (SRM) drive with incorporated operation capabilities to utility grid, microgrid and EV. The motor drive DC-link voltage is established from the battery through an interleaved boost/buck converter with fault-tolerance and reduced current ripple. The varied DC-link voltage can improve the driving performance and reduce the battery energy consumption over wide speed range. In the established SRM drive, through well-designed current control scheme, speed control scheme, and dynamic commutation tuning (DCT) scheme, it possesses good performance in motor driving mode. Under deceleration, the regenerative braking energy can be effectively recovered to the battery through the bidirectional converter. To avoid the DC-link overvoltage due to the failure of regenerative braking, a dynamic braking leg is connected across the DC-link.
When EV is in idle mode, the grid-to-vehicle (G2V) operation can be conducted via the established isolated on-board charger. The battery can be charged from the three-phase or single-phase grid through a switch-mode rectifier (SMR) and a CLLC resonant converter. The SMR can provide good power factor and lower current total harmonic distortion (THD). And the CLLC resonant converter with higher efficiency provides the galvanic isolation. Thanks to the bidirectional schematics of SMR and CLLC resonant converter, the vehicle-to-grid (V2G) operation can be further performed through the same converters. The EV can be regarded as a removable and distributed energy storage device, which discharges to the three-phase mains.
Finally, the interconnected operations of the developed EV SRM drive to vehicle and microgrid are presented. Through vehicle-to-vehicle (V2V) operation of the EV, it can share the energy to the nearby EV in the situation that the battery is exhausted and needs roadside assistance. In addition, the microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) operations can also be conductible. The EV battery can be charged from the microgrid through M2V operation. Conversely, it can also provide the energy support through V2M operation to the microgrid. The interconnection can stabilize the microgrid and utilize the energy of EV battery effectively.
ABSTRACT i
ACKNOWLEDGEMENTS ii
LIST OF CONTENTS iii
LIST OF FIGURES vi
LIST OF TABLES xiv
LIST OF SYMBOLS xv
LIST OF ABBREVIATION xxiv
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 BASICS OF SWITCHED-RELUCTANCE MOTOR DRIVE AND ELECTRIC VEHICLE 5
2.1 Introduction 5
2.2 Basics of SRM 5
2.2.1 Motor Structure 5
2.2.2 Governing Equations 6
2.2.3 Dynamic Modeling 8
2.2.4 Motor and Generator Operations of SRM 9
2.3 SRM Converters 10
2.4 Basics of Electric Vehicle 13
2.4.1 Classification 13
2.4.2 Power Control Unit 14
2.5 Energy Storage Devices 15
2.6 EV Charger 18
2.7 Interface Converter 20
2.8 The Developed EV SRM Drive 25
2.9 The Employed DSP TMS320F28335 28
2.10 Sensing and Interfacing Circuits 28
CHAPTER 3 BATTERY POWERED ELECTRIC VEHICLE SWITCHED- RELUCTANCE MOTOR DRIVE 31
3.1 Introduction 31
3.2 System Configuration 31
3.3 DC Source Powered SRM Drive 32
3.3.1 Power Circuit 32
3.3.2 Control Scheme 34
3.3.3 Measured Results 40
3.4 Battery Interface DC/DC Converter 47
3.4.1 System Configuration 47
3.4.2 Power Circuit 48
3.4.3 Control Scheme 49
3.4.4 Measured Results of Bidirectional DC/DC Converter 56
3.5 Performance Evaluation of the Battery Powered EV SRM drive 60
CHAPTER 4 BIDIRECTIONAL CLLC RESONANT DC/DC CONVERTER 65
4.1 Introduction 65
4.2 System Configuration 65
4.3 Characteristic Analysis of CLLC Resonant Converter 66
4.3.1 Voltage Gain of the CLLC Resonant Converter 66
4.3.2 Operation of CLLC Resonant Converter 68
4.4 Design and Implementation of CLLC Resonant Converter 72
4.4.1 Power Circuit 72
4.4.2 Control schemes 76
4.5 Experimental Evaluation of the Developed CLLC Converter 77
CHAPTER 5 GRID-CONNECTED G2V/V2G OPERATIONS 82
5.1 Introduction 82
5.2 System Configuration 82
5.3 Grid-connected Three-phase SMR/Inverter 82
5.3.1 Power Circuit 82
5.3.2 3P3W SMR in G2V Operation 84
5.3.3 3P3W Inverter in V2G Operation 95
5.4 Grid-connected Single-phase Boost SMR 101
5.4.1 Power Circuit 101
5.4.2 Single-phase Boost SMR in G2V Operation 102
CHAPTER 6 V2V/M2V/V2M OPERATIONS 110
6.1 Introduction 110
6.2 Vehicle-to-Vehicle Operation 110
6.2.1 Possible V2V Configurations 110
6.2.2 System Configuration of the Developed V2V Scheme 111
6.2.3 Measured Results 113
6.3 M2V/V2M Operations 115
6.3.1 System Configuration 115
6.3.2 Measured Results 117
CHAPTER 7 CONCLUSIONS 120
REFERENCES 121
A. Electric Vehicle and Motors
[1] M. Zeraoulia, M. E. H. Benbouzid, and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, Nov. 2006.
[2] C. C. Chan, A. Bouscayrol, and K. Chen, “Electric, hybrid, and fuel-cell vehicles: architectures and modeling,” IEEE Trans. Veh. Technol., vol. 59, no. 2, pp. 589-598, Feb. 2010.
[3] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, Jan. 2011.
[4] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[5] E. Silvas, T. Hofman, N. Murgovski, L. F. P. Etman, and M. Steinbuch, “Review of optimization strategies for system-level design in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 66, no. 1, pp. 57-70, Jan. 2017.
[6] I. Husain, B. Ozpineci, M. S. Islam, E. Gurpinar, G. J. Su, W. Yu, S. Chowdhury, L. Xue, D. Rahman, and R. Sahu, “Electric drive technology trends, challenges, and opportunities for future electric vehicles,” Proc. IEEE Proc., vol. 109, no. 6, pp. 1039-1059, June 2021.
[7] M. Ehsani, K. V. Singh, H. O. Bansal, and R. T. Mehrjardi, “State of the art and trends in electric and hybrid electric vehicles,” Proc. IEEE Proc., vol. 109, no. 6, pp. 967-984, June 2021.
[8] H. Kato, R. Ando, Y. Kondo, T. Suzuki, K. Matsuhashi, and S. Kobayashi, “Comparative measurements of the eco-driving effect between electric and internal combustion engine vehicles,” in Proc. IEEE EVS27, pp. 1-5, 2013.
[9] H. C. Righolt and F. G. Rieck, “Energy chain and efficiency in urban traffic for ICE and EV,” in Proc. IEEE EVS27, pp. 1-7, 2013.
[10] L. Athanasopoulou, H. Bikas, and P. Stavropoulos, “Comparative well-to-wheel emissions assessment of internal combustion engine and battery electric vehicles,” in Proc. Procedia CIRP, vol. 78, pp. 25-30, 2018.
[11] K. W. Lie, T. A. Synnevåg, Jacob J. Lamb, and Kristian M. Lien, “The carbon footprint of electrified city buses: a case study in Trondheim, Norway,” Energies, vol. 14, pp. 770, 2021.
[12] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, Jan.-Feb. 2000.
[13] A. Chiba, Y. Takano, M. Takeno, T. Imakawa, N. Hoshi, M. Takemoto, and S. Ogasawara, “Torque density and efficiency improvements of a switched reluctance motor without rare-earth material for hybrid vehicles,” IEEE Trans. Ind. Appl., vol. 47, no. 3, pp. 1240-1246, May-June 2011.
[14] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, “Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1327-1334, July-Aug. 2012.
[15] Y. Hu, C. Gan, W. Cao, C. Li, and S. J. Finney, “Split converter-fed SRM drive for flexible charging in EV/HEV applications,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6085-6095, Oct. 2015.
[16] K. Kiyota, T. Kakishima, A. Chiba, and M. A. Rahman, “Cylindrical rotor design for acoustic noise and windage loss reduction in switched reluctance motor for HEV applications,” IEEE Trans. Ind. Appl., vol. 52, no. 1, pp. 154-162, Jan.-Feb. 2016.
[17] M. Z. Lu, Z. W. Guo, and C. M. Liaw, “A battery/supercapacitor hybrid powered EV SRM drive and microgrid incorporated operations,” IEEE Trans. Transport. Electrific., vol. 7, no. 4, pp. 2848-2863, Dec. 2021.
[18] V. Shah and S. Payami, “Integrated converter with G2V, V2G, and DC/V2V charging capabilities for switched reluctance motor drive-train based EV application,” IEEE Trans. Ind. Appl., vol. 59, no. 3, pp. 3837-3850, May-June 2023.
[19] M. Kawa, K. Kiyota, J. Furqani, and A. Chiba, “Acoustic noise reduction of a high- efficiency switched reluctance motor for hybrid electric vehicles with novel current waveform,” IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2519-2528, May-June 2019.
[20] B. Bilgin, B. Howey, A. D. Callegaro, J. Liang, M. Kordic, J. Taylor, and A. Emadi, “Making the case for switched reluctance motors for propulsion applications,” IEEE Trans. Veh. Technol., vol. 69, no. 7, pp. 7172-7186, July 2020.
[21] G. Li, J. Ojeda, S. Hlioui, E. Hoang, M. Lecrivain, and M. Gabsi, “Modification in rotor pole geometry of mutually coupled switched reluctance machine for torque ripple mitigating,” IEEE Trans. Magn., vol. 48, no. 6, pp. 2025-2034, June 2012.
[22] M. A. Kabir and I. Husain, “Design of mutually coupled switched reluctance motors (MCSRMs) for extended speed applications using 3-phase standard inverters,” IEEE Trans. Energy Convers., vol. 31, no. 2, pp. 436-445, June 2016.
[23] L. Maharjan, E. Bostanci, S. Wang, E. Cosoroaba, W. Cai, F. Yi, P. Shamsi, W. Wang, L. Gu, M. Luo, N. A. Rahman, M. McDonough, C. Lin, J. Hearron, C. C. Narvaez, M. Wu, A. H. Isfahani, Y. Li, G. Rao, M. Moallem, P. T. Balsara, and B. Fahimi, “Comprehensive report on design and development of a 100-kW DSSRM,” IEEE Trans. Transport. Electrific., vol. 4, no. 4, pp. 835-856, Dec. 2018.
[24] X. Sun, K. Diao, G. Lei, Y. Guo, and J. Zhu, “Study on segmented-rotor switched reluctance motors with different rotor pole numbers for BSG system of hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 6, pp. 5537-5547, June 2019.
B. SRM Converters
[25] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, May 2011.
[26] C. Gan, J. Wu, Y. Hu, S. Yang, W. Cao, and J. M. Guerrero, “New integrated multilevel converter for switched reluctance motor drives in plug-in hybrid electric vehicles with flexible energy conversion,” IEEE Trans. Power Electron., vol. 32, no. 5, pp. 3754-3766, May 2017.
[27] C. Y. Ho, J. C. Wang, K. W. Hu, and C. M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, Jan. 2019.
[28] P. Kumar, M. Israyelu, and S. Sashidhar, “A simple four-phase switched reluctance motor drive for ceiling fan applications,” IEEE Access, vol. 11, pp. 7021-7030, 2023.
[29] R. L. Lin, H. P. Chi, and S. C. Gu, “High electromechanical-efficiency resonant miller-type driver for switched reluctance motors,” in Proc. IEEE PEDS, 2009.
[30] A. Ajan, J. Babu, M. Mohan, V. S. Nair, and T. Babu, “Performance comparison of a bridge converter and a modified miller converter: torque ripple minimization in switched reluctance motor,” in Proc. IEEE ICEEOT, 2016.
[31] S. Riyadi, “Analysis of C-dump converter for SRM drives,” in Proc. IEEE ICELTICs, pp. 179-184, 2018.
[32] A. A. A. Aziz, K. H. Ahmed, S. Wang, A. M. Massoud, and B. W. Williams, “A neutral- point diode-clamped converter with inherent voltage-boosting for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 67, no. 7, pp. 5313-5324, Jul. 2020.
C. Current Control and Commutation Shift of SRM Drive
[33] I. Kioskeridis and C. Mademlis, “A unified approach for four-quadrant optimal controlled switched reluctance machine drives with smooth transition between control operations,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 301-306, Jan. 2009.
[34] C. Sikder, I. Husain, and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, Jan.-Feb. 2014.
[35] F. Peng, J. Ye, and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7087-7098, Oct. 2016.
[36] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong, and C. M. Liaw, “A current control scheme with back EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, Dec. 2016.
[37] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, Sept. 2003.
[38] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, Mar. 2003.
[39] D. H. Lee and J. W. Ahn, “A novel four-level converter and instantaneous switching angle detector for high speed SRM drive,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2034-2041, Sept. 2007.
[40] J. Fan and Y. Lee, “A concept of accelerating the demagnetization of switched reluctance motor,” Can. J. Elect. Comput. Eng., vol. 43, no. 4, pp. 326-330, Fall 2020.
[41] C. Pollock and C. Y. Wu, “Acoustic noise cancellation techniques for switched reluctance drives,” IEEE Trans. Ind. Appl., vol. 33, no. 2, pp. 477-484, Mar.-Apr. 1997.
[42] W. Ding, S. Yang, and Y. Hu, “Performance improvement for segmented-stator hybrid- excitation SRM drives using an improved asymmetric half-bridge converter,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 898-909, Feb. 2019.
[43] W. Ding, G. Liu, and P. Li, “A hybrid control strategy of hybrid-excitation switched reluctance motor for torque ripple reduction and constant power extension,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 38-48, Jan. 2020.
[44] X. Zhang, Q. Yang, M. Ma, Z. Lin, and S. Yang, “A switched reluctance motor torque ripple reduction strategy with deadbeat current control and active thermal management,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 317-327, Jan. 2020.
[45] G. Fang, F. P. Scalcon, D. Xiao, R. P. Vieira, H. A. Gründling, and A. Emadi, “Advanced control of switched reluctance motors (SRMs): a review on current regulation, torque control and vibration suppression,” IEEE Open J. Ind. Electron. Soc., vol. 2, pp. 280-301, 2021.
[46] A. K. Sahu, A. Emadi, and B. Bilgin, “Noise and vibration in switched reluctance motors: a review on structural materials, vibration dampers, acoustic impedance, and noise masking methods,” IEEE Access, vol. 11, pp. 27702-27718, 2023.
D. Hybrid Energy Storage System in EV
[47] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[48] T. Horiba, “Lithium-ion battery systems,” Proc. IEEE Proc., vol. 102, no. 6, pp. 939-950, June 2014.
[49] E. Chemali, M. Preindl, P. Malysz, and A. Emadi, “Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: state-of-the-art review and future trends,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1117-1134, Sept. 2016.
[50] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art and energy management system of Lithium-ion batteries in electric vehicle applications: issues and recommendations,” IEEE Access, vol. 6, pp. 19362-19378, 2018.
[51] S. Thangavel, D. Mohanraj, T. Girijaprasanna, S. Raju, C. Dhanamjayulu, and S. M. Muyeen, “A comprehensive review on electric vehicle: battery management system, charging station, traction motors,” IEEE Access, vol. 11, pp. 20994-21019, 2023.
[52] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” Proc. IEEE Proc., vol. 95, no. 4, pp. 806-820, Apr. 2007.
[53] G. O. Suvire, P. E. Mercado, and L. J. Ontiveros, “Comparative analysis of energy storage technologies to compensate wind power short-term fluctuations,” in Proc. IEEE TDCE, pp. 522-528, 2010.
[54] M. Farhadi and O. Mohammed, “Energy storage technologies for high-power applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1953-1961, May-June 2016.
[55] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” in Proc. IEEE VPPC, pp. 1-5, 2010.
[56] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, Nov.-Dec. 2017.
[57] N. Zhao, N. Schofield, R. Yang, and R. Gu, “Investigation of DC-link voltage and temperature variations on EV traction system design,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3707-3718, July-Aug. 2017.
[58] S. Xiao, X. Gu, Z. Wang, T. Shi, and C. Xia, “A novel variable DC-link voltage control method for PMSM driven by a quasi-Z-source inverter,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3878-3890, Apr. 2020.
E. DC/DC Interface Converters
[59] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” in Proc. IEEE ECCE, pp. 553-560, 2011.
[60] O. C. Onar, J. Kobayashi, D. C. Erb, and A. Khaligh, “A bidirectional high power quality grid interface with a novel bidirectional noninverted buck-boost converter for PHEVs,” IEEE Trans. Veh. Technol., vol. 61, no. 5, pp. 2018-2032, June 2012.
[61] I. P. Farneth, “Design of a phase-shifted ZVS full-bridge front-end DC/DC converter for fuel cell inverter applications,” in Proc. IEEE ITEC, pp. 1-6, 2014.
[62] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC–DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July/Aug. 2015.
[63] A. Mallik and A. Khaligh “Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6523-6531, Aug. 2017.
[64] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC-DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997- 118019, 2019.
[65] M. S. Bhaskar, V. K. Ramachandaramurthy, S. Padmanaban, F. Blaabjerg, D. M. Ionel, M. Mitolo, and D. Almakhles, “Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130-178166, 2020.
[66] I. Alhurayyis, A. Elkhateb, and J. Morrow, “Isolated and nonisolated DC-to-DC converters for medium-voltage DC networks: a review,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 7486-7500, Dec. 2021.
[67] E. D. Aranda, S. P. Litrán, and M. B. F. Prieto, “Combination of interleaved single-input multiple-output DC-DC converters,” CSEE J. Power Energy Syst., vol. 8, no. 1, pp. 132-142, Jan. 2022.
F. EV Bidirectional Battery Charger
G2V Operation
[68] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, Nov. 2011.
[69] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[70] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, Aug. 2013.
[71] J. G. Pinto, V. Monteiro, H. Goncalves, and J. L. Afonso, “Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode,” IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1104-1116, Mar. 2014.
[72] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. R. McNutt, A. B. Lostetter, J. S. Lee, and K. Shiozaki, “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2014.
[73] H. Yihua, S. Xueguan, C. Wenping, and J. Bing, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Trans. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, Oct. 2014.
[74] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, Mar. 2017.
[75] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, Mar. 2017.
[76] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicle,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498-2507, Apr. 2017.
[77] D. H. Kim, M. J. Kim, and B. K. Lee, “An integrated battery charger with high power density and efficiency for electric vehicles,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4553-4565, June 2017.
[78] V. Monteiro, J. C. Ferreira, A. A. Nogueiras Meléndez, C. Couto, and J. L. Afonso, “Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000-1011, Feb. 2018.
[79] H. V. Nguyen, D. D. To, and D. C. Lee, “Onboard battery chargers for plug-in electric vehicles with dual functional circuit for low-voltage battery charging and active power decoupling,” IEEE Access, vol. 6, pp. 70212-70222, 2018.
[80] S. Jeong, Y. Jeong, J. Kwon, and B. Kwon, “A soft-switching single-stage converter with high efficiency for a 3.3-kW on-board charger,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 6959-6967, Sept. 2019.
[81] H. V. Nguyen, D. C. Lee, and F. Blaabjerg, “A novel SiC-based multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5635-5646, May 2021.
[82] J. Cai and X. Zhao, “An on-board charger integrated power converter for EV switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3683-3692, May 2021.
[83] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[84] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles,” IEEE Access, vol. 6, pp. 13866-13890, 2018.
[85] M. R. Khalid, I. A. Khan, S. Hameed, M. S. J. Asghar, and J. S. Ro, “A comprehensive review on structural topologies, power levels, energy storage systems, and standards for electric vehicle charging stations and their impacts on grid,” IEEE Access, vol. 9, pp. 128069-128094, 2021.
Switched-mode Rectifier
[86] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June 2004.
[87] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Proc. Elect. Power Appl., vol. 1, no. 3, pp. 316-328, May 2007.
[88] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
[89] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[90] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015.
[91] R. Huang, J. Xu, Q. Chen, L. Wang, and X. Geng, “Independent current control with differential feedforward for three-phase boost PFC rectifier in wide AC input frequency application,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 6, pp. 7062-7071, Dec. 2022.
Resonant Converter
[92] F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. G. Dunford, “An LLC resonant DC–DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437-5445, Dec. 2013.
[93] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
[94] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC-DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[95] S. Kim and F. Kang, “Multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Ind. Electron., vol. 62, no. 6, pp. 3460-3472, June 2015.
[96] U. Kundu and P. Sensarma, “Gain-relationship-based automatic resonant frequency tracking in parallel LLC converter,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 874-883, Feb. 2016.
[97] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017.
[98] L. F. Martins, D. Stone, and M. Foster, “Modelling of bidirectional CLLC resonant converter operating under frequency modulation,” in Proc. IEEE ECCE, 2019.
[99] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, Apr. 2019.
[100] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active saturation mitigation in high-density dual-active-bridge DC–DC converter for on- board EV charger applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376-4387, Apr. 2020.
[101] J. Min and M. Ordonez, “Bidirectional resonant CLLC charger for wide battery voltage range: asymmetric parameters methodology,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 6662-6673, June 2021.
[102] Y. Cao, M. Ngo, R. Burgos, A. Ismail, and D. Dong, “Switching transition analysis and optimization for bidirectional CLLC resonant DC transformer,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3786-3800, Apr. 2022.
V2G Operation
[103] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba, and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) satisfying scheduled charging,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559-564, Mar. 2012.
[104] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, Dec. 2013.
[105] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE Proc., vol. 101, no. 11, pp. 2409-2427, Nov. 2013.
[106] H. Turker and S. Bacha, “Optimal minimization of plug-in electric vehicle charging cost with cehicle-to-home and vehicle-to-grid concepts,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10281-10292, Nov. 2018.
[107] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, Jan. 2018.
[108] N. Erdogan, F. Erden, and M. Kisacikoglu, “A fast and efficient coordinated vehicle-to-grid discharging control scheme for peak shaving in power distribution system,” J. Modern Power Syst. Clean Energy, vol. 6, no. 3, pp. 555-566, May 2018.
[109] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, Mar. 2018.
[110] S. A. Amamra and J. Marco, “Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost,” IEEE Access, vol. 7, pp. 178528-178538, 2019.
[111] M. Moschella, M. A. A. Murad, E. Crisostomi, and F. Milano, “Decentralized charging of plug-in electric vehicles and impact on transmission system dynamics,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1772-1781, Mar. 2021.
[112] S. Das, P. Acharjee and A. Bhattacharya, “Charging scheduling of electric vehicle incorporating grid-to-vehicle and vehicle-to-grid technology considering in smart grid,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1688-1702, Mar.-Apr. 2021.
G. V2V Operation
[113] T. J. C. Sousa, V. Monteiro, J. C. A. Fernandes, C. Couto, A. A. N. Meléndez, and J. L. Afonso, “New perspectives for vehicle-to-vehicle (V2V) power transfer,” in Proc. IEEE IECON, pp. 5183-5188, 2018.
[114] S. Wang, H. Li, Z. Zhang, M. Li, J. Zhang, X. Ren, and Q. Chen, “Multifunction capability of SiC bidirectional portable chargers for electric vehicles,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 5, pp. 6184-6195, Oct. 2021.
[115] E. Ucer, R. Buckreus, M. E. Haque, M. Kisacikoglu, Y. Sozer, S. Harasis, M. Guven, and L. Giubbolini, “Analysis, design, and comparison of V2V chargers for flexible grid integration,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4143-4154, July-Aug. 2021.
[116] M. Shurrab, S. Singh, H. Otrok, R. Mizouni, V. Khadkikar, and H. Zeineldin, “An efficient vehicle-to-vehicle (V2V) energy sharing framework,” IEEE Internet Things J., vol. 9, no. 7, pp. 5315-5328, April, 2022.
[117] U. B S, V. Khadkikar, H. H. Zeineldin, S. Singh, H. Otrok, and R. Mizouni, “Direct electric vehicle to vehicle (V2V) power transfer using on-board drivetrain and motor windings,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 10765-10775, Nov. 2022.
[118] S. Liu, Q. Ni, Y. Cao, J. Cui, D. Tian, and Y. Zhuang, “A reservation-based vehicle-to- vehicle charging service under constraint of parking duration,” IEEE Syst. J., vol. 17, no. 1, pp. 176-187, Mar. 2023.
[119] A. Shafiqurrahman, B. S. Umesh, N. A. Sayari, and V. Khadkikar, “Electric vehicle-to- vehicle energy transfer using on-board converters,” IEEE Trans. Transport. Electrific., vol. 9, no. 1, pp. 1263-1272, Mar. 2023.
H. M2V/V2M Operation
[120] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
[121] D. Qin, Q. Sun, R. Wang, D. Ma, and M. Liu, “Adaptive bidirectional droop control for electric vehicles parking with vehicle-to-grid service in microgrid,” CSEE J. Power Energy Syst., vol. 6, no. 4, pp. 793-805, Dec. 2020.
[122] M. S. Rahman, M. J. Hossain, J. Lu, F. H. M. Rafi, and S. Mishra, “A vehicle-to-microgrid framework with optimization-incorporated distributed EV coordination for a commercial neighborhood,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1788-1798, Mar. 2020.
[123] K. Lai and L. Zhang, “Sizing and siting of energy storage systems in a military-based vehicle-to-grid microgrid,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 1909-1919, May-June 2021.
[124] S. Li, P. Zhao, C. Gu, J. Li, S. Cheng, and M. Xu, “Battery protective electric vehicle charging management in renewable energy system,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1312-1321, Feb. 2023.
I. Others
[125] E. W. Hsu, “An EV IPMSM drive with position sensorless control and V2G/G2V/V2V capabilities,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2023.
[126] Z. C. Chou, “Wind/PV based DC microgrid with reconfigurable interface converter,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2023.
[127] Texas Instruments Inc. TMS320F2833x Real-Time Microcontrollers, TMS320F28335 datasheet, June 2007 [Revised Aug. 2022].
[128] L. H. Wang, “Switched-reluctance motor based electric vehicle and its grid-connected applications,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *