帳號:guest(18.119.122.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪瑄敏
作者(外文):Hong, Xuan-Min
論文名稱(中文):三相交錯式車用充電升壓轉換器研製
論文名稱(外文):Design and Implementation of Three-Phase Interleaved Boost Converter for Vehicle Charging
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):林景源
沈志隆
曾聖有
口試委員(外文):Lin, Jing-Yuan
Shen, Chih-Lung
Tseng, Sheng-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061505
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:87
中文關鍵詞:直流/直流升壓轉換器同步整流三相交錯式拓樸車載充電器
外文關鍵詞:dc/dc boost convertersynchronous rectificationthree-phase interleaved topologyon-board charger
相關次數:
  • 推薦推薦:0
  • 點閱點閱:0
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本研究研製一部直流/直流轉換器,利用同步整流升壓轉換器減少整體系統損耗,並結合交錯式拓樸多相並聯,分散傳輸功率。電路可分為電力級與控制級,電力級由三相升壓轉換器並聯而成,具六顆功率開關元件;控制級則由多組周邊電路與微控制器組成,藉由回授電路偵測電感電流與輸出電壓,於微控制器內部進行追控升壓,達到穩定輸出電壓。本研究可應用於車用充電系統,利用既有的馬達電感,反向做為電池充電升壓轉換器之電感。
系統微控制器使用TI TMS320F280049C做為控制核心,搭配輔助電源、電壓/電流回授電路、開關隔離驅動電路、保護電路以及接觸器電路。控制方面採用雙環控制,具較好的動態響應,提升系統可靠性,且各相皆有獨立的內環,各自分開計算,以解決三相電流分流不均的問題。
本研究主要貢獻為:(1)實作一部三相交錯式升壓轉換器,降低總輸入電流漣波,由400 V輸入升壓至800 V穩定輸出電壓,達到功率7.2 kW;(2)同步整流升壓轉換器三相並聯,減少二極體導通損耗,亦減少單相轉換器電感銅損,系統實測效率97.2%;(3)可應用於電動車車載充電系統基礎研製,節省DC/DC轉換器製造成本與空間,追求系統一體化。
This research develops a DC/DC converter that employs synchronous rectification boost converter to reduce system losses and combines interleaved topology with multiphase parallel operation to distribute power transmission. The circuit can be divided into the power stage and the control stage. The power stage consists of three boost converters in parallel with six power switching devices. The control stage comprises multiple peripheral circuits and a microcontroller, which uses feedback circuits to monitor the inductor current and output voltage and implements control algorithms to maintain a stable output voltage. This research result can be applied to automotive charging systems by utilizing the existing motor inductor, as a boost converter inductor.
Micro-controller, TI TMS320F280049C, is used as the main control unit, with peripheral circuit including auxiliary power, voltage/current feedback circuit, gate driver isolating circuit, protective circuit and contactor circuit. Dual-loop control is implemented to achieve better dynamic response and enhances system reliability. Each phase is equipped with an independent inner control loop, effectively solving the problem of imbalance of current sharing.
The main contributions of this research are: (1) Implement three-phase interleaved boost converter, which can reduce the total input current ripple, with full-load power of 7.2 kW and rated voltage 400 V, boosted to 800 V, (2) Three-phase synchronous rectification boost converter reduces diode conduction losses and inductor copper losses. The system achieves a measured efficiency of 97.2%, (3) The proposed converter has potential applications in vehicle charging systems by utilizing existing motor inductor as boost converter inductor, with the goals of reducing manufacturing costs and space for DC/DC converter.
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1研究背景與動機 1
1-2文獻回顧 2
1-2-1轉換器架構簡介 3
1-2-2轉換器控制簡介 6
1-3論文大綱 10
第二章 系統架構與控制策略 11
2-1系統架構 11
2-2控制策略 13
2-3交錯式轉換器 17
2-3-1交錯式轉換器簡介 17
2-3-2交錯式轉換器動作原理 18
2-4馬達等效感值 23
第三章 硬體周邊電路 25
3-1輔助電源 25
3-2電壓/電流回授電路 28
3-2-1直流鏈電壓 28
3-2-2電感電流 29
3-2-3輸出電流 31
3-3保護電路 32
3-3-1電壓箝位 32
3-3-2過壓/過流 33
3-4驅動電路架構 35
3-4-1驅動電源 35
3-4-2隔離驅動電路 37
3-5 接觸器電路 39
第四章 韌體架構與控制流程 40
4-1微控制器簡介 40
4-2控制卡模組簡介 43
4-3韌體架構 44
4-4三相交錯式升壓轉換器控制流程 44
4-4-1主程式流程 44
4-4-2類比/數位中斷副程式 45
4-4-3外部中斷保護副程式 49
第五章 系統模擬與實測波形 51
5-1轉換器規格與元件參數 51
5-2電感設計 53
5-3 PSIM模擬 55
5-3-1穩態功率–半載(3.6 kW) 57
5-3-2穩態功率–滿載(7.2 kW) 59
5-3-3擾動測試 60
5-3-4變載測試 62
5-3-5總電流漣波 62
5-4實測波形 63
5-4-1穩態功率–半載(3.6 kW) 65
5-4-2穩態功率–滿載(7.2 kW) 67
5-4-3擾動測試 68
5-4-4變載測試 70
5-4-5總電流漣波 71
5-5實務考量 72
5-5-1輸出電容不平衡 72
5-5-2解耦合電容 74
5-5-3回授雜訊改善 75
5-5-4回授電路校正 76
5-6損耗分析 76
5-6-1電感損耗 76
5-6-2功率開關損耗 79
5-6-3總損耗 81
第六章 結論與未來研究方向 82
6-1結論 82
6-2未來研究方向 83
參考文獻 85
[1] Fuel Economy, All-Electric Vehicles
網站:https://www.fueleconomy.gov/feg/evtech.shtml
[2] S. Jaman, S. Chakraborty, D.-D. Tran, T. Geury, et al. “Review on Integrated On-Board Charger-Traction Systems: V2G Topologies, Control Approaches, Standards and Power Density State-of-the-Art for Electric Vehicle”. Energies 2022.
[3] 電動汽車IONIQ5逆變器的拆卸結果
網站:https://youtu.be/uJhh5RixckU?t=374
[4] EPARC,電力電子學綜論,全華,2015
[5] J. Chen, M. -K. Nguyen, Z. Yao, C. Wang, L. Gao, and G. Hu, “DC-DC Converters for Transportation Electrification: Topologies, Control, and Future Challenges”, IEEE Electrification Magazine, vol. 9, no. 2, June 2021.
[6] A. Thiyagarajan, S. G. Praveen Kumar and A. Nandini, “Analysis and comparison of conventional and interleaved DC/DC boost converter”, Second International Conference on Current Trends In Engineering and Technology - ICCTET 2014, Coimbatore, India, 2014.
[7] J. K. Chatterjee and P. J. Chauhan, “Single-loop vs two-loop voltage and frequency control of isolated SEIG based RECS”, 2011 International Conference on Energy, Automation and Signal, 2011.
[8] S. Mohanty, A. Choudhury, S. Pati, S. K. Kar, and S. Khatua, “A comparative analysis between a single loop PI, double loop PI and Sliding Mode Control structure for a buck converter”, 2021 1st Odisha International Conference on Electrical Power Engineering, Communication and Computing Technology(ODICON), Bhubaneswar, India, 2021.
[9] S. Bosheng. “Digital current balancing for an interleaved boost PFC”. Analog Applications (2013).
[10] M. O’Loughlin. “An Interleaved PFC Preregulator for High-Power Converters”. Texas Instruments Literature Number SLUA746 (2015).
[11] J. S. A. Rahavi, T. Kanagapriya and R. Seyezhai, “Design and analysis of Interleaved Boost Converter for renewable energy source”, 2012 International Conference on Computing, Electronics and Electrical Technologies (ICCEET), Nagercoil, India, 2012.
[12] Mean Well, LRS-35 series Datasheet.
[13] Mean Well, SCW05 Series Datasheet.
[14] Mean Well, DPBW06 Series Datasheet.
[15] Mean Well, SPAN02 Series Datasheet.
[16] Mean Well, SPBW06 Series Datasheet.
[17] Allegro, ACS725KMA Datasheet.
[18] Texas Instruments, INA214 Datasheet.
[19] Henry J. Zhang, “PCB Layout Considerations for Non-Isolated Switching Power Supplies”, Linear Technology Corporation Application Note AN136-14 (2012).
[20] Bob Kando, “PCB Layout Guidelines for Power Controllers”, Texas Instruments Literature Number SLUA366 (2005).
[21] NXP semiconductors, 74HC365D Datasheet.
[22] Texas Instruments, LM339 Datasheet.
[23] Texas Instruments, SN74LVCG00 Datasheet.
[24] P-DUKE Technology, PDL03 Series Datasheet.
[25] STMicroelectronics, L79 Datasheet.
[26] Infineon, 1EDI60N12AF Datasheet.
[27] Tyco Electronics Corporation, LEV100 Series Datasheet.
[28] Alpha & Omega Semiconductor, AO3400A Datasheet.
[29] Texas Instruments, TMS320F28004x Datasheet.
[30] Texas Instruments, Piccolo F280049C controlCARD Information Guide.
[31] S. Öztürk, “Design of three phase interleaved DC/DC boost converter with all SiC semiconductors for electric vehicle applications”, 2017 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2017.
[32] CREE, C3M0032120K Datasheet.
[33] Chang Sung Corporation, Magnetic Powder Cores.
[34] AWG線徑對照表,禾豐開發科技有限公司
[35] 潘冠儒,雙向直流/直流轉換器研製,國立清華大學碩士論文,民國110年7月
[36] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems, New York: Wiley, John & Sons, Inc. 2002.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *