帳號:guest(3.147.48.240)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃禹傑
作者(外文):Huang, Yu-Jie
論文名稱(中文):具隔離聯網及能源收集風力開關式磁阻發電機為主之直流微電網
論文名稱(外文):A WIND SWITCHED-RELUCTANCE GENERATOR BASED DC MICROGRID WITH ISOLATED GRID-CONNECTED AND ENERGY HARVESTING FUNCTIONS
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):陳盛基
陳偉倫
口試委員(外文):Chen, Seng-Chi
Chen, Woei-Luen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061504
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:132
中文關鍵詞:風力發電機切換式磁阻電機風渦輪機模擬器換相移位最大功率點追蹤直流微電網電池儲能系統能源支撐比例諧振控制微電網至電網電網至微電網CLLC諧振轉換器
外文關鍵詞:Wind generatorSRGwind turbine emulatorcommutation shiftMPPTDC microgridBESSenergy supportPR controlM2GG2MCLLC converter
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在開發一具能源收集和隔離聯網功能之風力切換式磁阻發電機為主直流微電網。為利於研究進行,先探究了解永磁同步馬達、風力發電機、微電網、儲能系統和隔離轉換器之關鍵事務,以及常用界面轉換器。首先,以變頻表面貼磁式永磁同步馬達系統建構一風渦輪機模擬器。在適當設計之轉矩模式操作下,風渦輪機之轉矩-速度以及功率-速度特性曲線可忠實產出。所開發之風渦輪模擬機在速度操作模式,亦可作為傳統發電機之渦輪機。
接著,研製一具非對稱橋式轉換器之風力切換式磁阻發電機,由風渦輪模擬機驅動,藉由適當設計之電力電路、感測機構、換相機制、外加激磁源、電壓及電流控制器獲得良好發電特性。對於一般定速發電機,可得到良好的穩壓調節特性之輸出電壓。至於所風渦輪機於變速模式下驅動之切換式磁阻發電機,使用擾動觀察法實現最大功率點追控。在微電網建置上,由風力切換式磁阻發電機之輸出建立直流匯流排之電壓。當微電網發生能源短缺時,為增進微電網供電品質,所開發一蓄電池儲能系統,經由雙向單臂升/降壓直流/直流轉換器連接至微電網之直流匯流排,以提高微電網之供電品質。此外,再開發一以三相維也納切換式整流器為基礎電路之插入式能源收集系統,將納收之能源支撐微電網。可納取之電源含直流、單相交流及三相交流電源。
在負載側,建構一組三相六開關負載變頻器,三個開關臂可安排為單相三線變頻器或三相三線變頻器。單相三線變頻器可產生單相220V/110V 60Hz電壓源,供給家用負載用電力。為獲得良好的正弦電壓波形及調節特性,採用比例諧振控制。對於三相三線變頻器,應用於微電網至電網及電網至微電網之操控。操作在微電網至電網模式,微電網可對市電電網提供有效功率以及虛功補償;反之,操作在電網至微電網模式,電網之三相交流電源可對微電網提供能源支撐。為避免家用負載端發生感電事故,建構一CLLC轉換器,提供電網與家用負載間之電氣隔離。
This thesis aims to develop a DC microgrid powered by wind-powered switched reluctance generator (SRG) with isolated grid-connected and energy harvesting capabilities. In order to facilitate the research, key aspects related to permanent magnet synchronous motors (PMSMs), wind generators, microgrids, energy storage systems, and isolation converters are explored. Firstly, a wind turbine emulator (WTE) is constructed using a variable frequency surface-mounted permanent magnet synchronous motor (SPMSM) system. Under well-designed torque mode operation, the simulator accurately reproduces the torque-speed and power-speed characteristic curves of the wind turbine. Moreover, it can also serve as a conventional generator turbine when operated in speed mode.
A WTE driven wind SRG with asymmetrical bridge converter is designed and implemented. Good generating characteristics are obtained through proper design of the power circuit, sensing mechanism, commutation mechanism, external excitation source, voltage and current controllers. For general constant-speed generation, the output voltage exhibits good voltage regulation characteristics. As for the SRG driven by the WTE in variable speed mode, maximum power point tracking (MPPT) is achieved using perturb and observe (P&O) method. Then the wind SRG based DC-bus is constructed. To enhance the power supplying quality of the microgrid during energy shortage, a battery energy storage system (BESS) is developed and connected to the DC bus of the microgrid through a bidirectional one-leg boost/buck DC/DC converter. Moreover, a plugin energy harvester based on a three-phase Vienna switch-mode rectifier is further developed to supply energy to the microgrid. The possible input sources include DC, single-phase AC and three-phase AC sources.
At the load side, a three-phase six-switch (3P6SW) inverter is constructed, which can function as a single-phase three-wire (1P3W) inverter or a three-phase three-wire (3P3W) inverter. Under the 1P3W inverter mode, the single-phase 220V/110V 60Hz AC voltage sources can be generated for powering the household loads. The proportional-resonant (PR) control is adopted for good sinusoidal voltage waveform quality and dynamic regulation characteristics. Under the 3P3W inverter mode, the operations can be performed from microgrid to utility grid (M2G) and from utility grid to microgrid (G2M). Under M2G operation, the microgrid can provide active power and reactive power to the utility grid. Conversely, operating in G2M mode allows the three-phase AC power of the utility grid to support the microgrid. To avoid electrical hazards at the household load side, a CLLC converter is constructed as an intermediate stage providing galvanic isolation between the utility grid and the household loads.
摘要 a
致謝 b
目錄 c
第一章、簡介 d
第二章、微電網相關技術 g
第三章、風渦輪機模擬器之建立 h
第四章、風力切換式磁阻發電機之開發 i
第五章、基於風力開關磁阻發電機之直流微電網 j
第六章、維也納切換式整流器為主之能源輔助系統 k
第七章、結論 l
附錄:英文論文 n



ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xv
LIST OF SYMBOLS xvi
LIST OF ABBREVIATIONS xxvi
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 SOME MICROGRID RELATED TECHNOLOGIES 6
2.1 Introduction 6
2.2 Microgrids 6
2.3 Wind Generators 8
2.3.1 Wind Turbines 8
2.3.2 Governing Equations of Wind Turbine 9
2.3.3 MPPT Control 11
2.3.4 Typical Wind Generators 12
2.4 Turbine Emulators 13
2.5 Permanent Magnet Synchronous Machine 14
2.5.1 Motor Structures 14
2.5.2 Physical Modeling 15
2.5.3 Measurement of Motor Parameters 18
2.6 Switched-Reluctance Machine 20
2.6.1 Motor Structures 20
2.6.2 Governing Equations and Dynamic Modeling 21
2.6.3 SRM Converters 24
2.6.4 Some Key Issues of SRG 27
2.7 Energy Storage Devices 27
2.8 Interface Converters 29
CHAPTER 3 ESTABLISHMENT OF WIND TURBINE EMULATOR 34
3.1 Introduction 34
3.2 System Configuration 34
3.3 Permanent-Magnet Synchronous Motor Drive 34
3.3.1 Power Circuit 34
3.3.2 Sensing and Interfacing Circuits 36
3.4 Control Schemes 37
3.4.1 Current Control Scheme 37
3.4.2 Speed Control Scheme 38
3.5 Experimental Results of the Established SPMSM Drive 41
3.5.1 Starting Characteristics 41
3.5.2 Speed Dynamic Responses 42
3.6 Wind Turbine Emulator 43
3.6.1 Torque Controller 43
3.6.2 Modeling of Wind Turbine Characteristics 43
3.6.3 Measured Torque-speed and Power-speed Curves 47
CHAPTER 4 DEVELOPMENT OF SWITCHED-RELUCTANCE GENERATORS 48
4.1 Introduction 48
4.2 Switched-Reluctance Generator 48
4.2.1 Power Circuit 48
4.2.2 Governing Equations 49
4.3 Control Scheme 50
4.3.1 Current Control Scheme 51
4.3.2 Voltage Control Scheme 52
4.3.3 Commutation Scheme 54
4.4 Measured Results 56
4.5 Reassessment of the SRG 62
4.6 Turbine Emulator Driven SRG 64
4.6.1 MPPT Algorithms of Wind SRG 65
4.6.2 Experimental Evaluation 66
CHAPTER 5 DC MICROGRID BASED ON SWITCHED-RELUCTANCE GENERATOR 71
5.1 Introduction 71
5.2 System Configuration of the Developed Microgrid 71
5.3 Battery Energy Storage System 73
5.3.1 Power Circuit 73
5.3.2 Control Scheme 74
5.3.3 Measured Results 79
5.4 Half-bridge CLLC Resonant Converter 80
5.4.1 Operation of the HBCLLC Resonant Converter 80
5.4.2 Operation Principle 81
5.4.3 Design and Implementation 84
5.4.4 Control Schemes 85
5.4.5 Measured Results 86
5.5 Single-phase Three-wire Inverter 87
5.5.1 Power Circuit 87
5.5.2 Dynamic Modeling 88
5.5.3 Control Scheme 91
5.5.4 Measured Results 93
5.6 M2G/G2M Operations via 3P3W Inverter 97
5.6.1 Power Circuit 97
5.6.2 G2M Operation 98
5.6.3 M2G Operation 102
CHAPTER 6 VIENNA SMR BASED ENERGY SUPPORT SCHEME 105
6.1 Introduction 105
6.2 Energy Support Scheme with Three-phase AC Input 105
6.2.1 Circuit Operation of Vienna SMR 106
6.2.2 Equivalent Circuit Analysis 109
6.2.3 Circuit Components 110
6.2.4 Control Schemes 112
6.2.5 Measured Results 114
6.3 Vienna SMR with Single-phase AC Input 116
6.3.1 Circuit Operation 116
6.3.2 Power Circuit 118
6.3.3 Control Schemes 118
6.3.4 Measured Results 119
6.4 Vienna SMR with DC input 120
CHAPTER 7 CONCLUSIONS 123
REFERENCES 124
A. Microgrids
[1] N. Eghtedarpour and E. Farjah, “Power control and management in a hybrid AC/DC microgrid,” IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1494-1505, May 2014.
[2] E. Rodriguez-Diaz, M. Savaghebi, J. C. Vasquez, and J. M. Guerrero, “An overview of low voltage DC distribution systems for residential applications,” in Proc. IEEE ICCE, 2015, pp. 318-322.
[3] H. Xiao, A. Luo, Z. Shuai, G. Jin, and Y. Huang, “An improved control method for multiple bidirectional power converters in hybrid AC/DC microgrid,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 340-347, Jan. 2016.
[4] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids-part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
[5] A. Frances, R. Asensi, Ó. García, R. Prieto, and J. Uceda, “Modeling electronic power converters in smart DC microgrids-an overview,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 6274-6287, Nov. 2017.
[6] M. Farrokhabadi, C. A. Canizares, J. W. Simpson-Porco, E. Nasr, L. Fan, P. A. Mendoza-Araya, R. Tonkoski, U. Tamrakar, N. Hatziargyriou, D. Lagos, and R. W. Wies, “Microgrid stability definitions, analysis, and examples,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 13-29, Jan. 2020.
[7] M. U. Mutarraf, Y. Guan, Y. Terriche, C. L. Su, M. Nasir, J. C. Vasquez, and J. M. Guerrero, “Adaptive power management of hierarchical controlled hybrid shipboard microgrids,” IEEE Access, vol. 10, pp. 21397-21411, 2022.
[8] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” in Proc. IEEE ICBEST., 2015, pp. 62-67.
[9] Y. Gu, W. Li, and X. He, “Analysis and control of bipolar LVDC grid with DC symmetrical component method,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 685-694, Jan. 2016.
[10] J. Mohammadi, F. Badrkhani Ajaei and G. Stevens, “Grounding the DC microgrid,” IEEE Trans. Ind Appl., vol. 55, no. 5, pp. 4490-4499, Sept.-Oct. 2019.
[11] S. Rivera, R. Lizana F., S. Kouro, T. Dragičević, and B. Wu, “Bipolar DC power conversion: state-of-the-art and emerging technologies,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1192-1204, April 2021.
[12] I. Ninma Jiya, H. Van Khang, N. Kishor, and R. M. Ciric, “Novel family of high-gain nonisolated multiport converters with bipolar symmetric outputs for DC microgrids,” IEEE Trans. Power Electron., vol. 37, no. 10, pp. 12151-12166, Oct. 2022.
[13] J. M. Guerrero, P. C. Loh, T. L. Lee, and M. Chandorkar, “Advanced control architectures for intelligent microgrids-part II: power quality, energy storage, and AC/DC microgrids,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1263-1270, Apr. 2013.
[14] T. Dragičević, J. M. Guerrero, J. C. Vasquez, and D. Škrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014.
[15] D. Papadaskalopoulos, D. Pudjianto and G. Strbac, “Decentralized coordination of microgrids with flexible demand and energy storage,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 1406-1414, Oct. 2014
[16] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids—part I: a review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4876-4891, Jul. 2016.
[17] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 928-948, Sep. 2017.
[18] J. Zhou, Y. Xu, H. Sun, Y. Li, and M. Chow, “Distributed power management for networked AC/DC microgrids with unbalanced microgrids,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1655-1667, Mar. 2020.
[19] F. D. Esteban, F. M. Serra and C. H. De Angelo, “Control of a DC-DC dual active bridge converter in DC microgrids applications,” IEEE Latin Amer. Trans., vol. 19, no. 8, pp. 1261-1269, Aug. 2021.
[20] F. S. Al-Ismail, “DC microgrid planning, operation, and control: a comprehensive review,” IEEE Access, vol. 9, pp. 36154-36172, 2021.
B. Wind Turbine Emulators
[21] H. M. Kojabadi, L. Chang, and T. Boutot, “Development of a novel wind turbine simulator for wind energy conversion systems using an inverter-controlled induction motor,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 547-552, 2004.
[22] S. Tammaruckwattana and K. Ohyama, “Experiment verification of variable wind speed power generation system using permanent magnet synchronous generator by wind turbine emulator,” in Proc. IEEE IES., 2012, pp. 5827-5832.
[23] Surinkaew and I. Ngamroo, “Coordinated robust control of DFIG wind turbine and PSS for stabilization of power oscillations considering system uncertainties,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 823-833, July 2014.
[24] D. Llano, M. Tatlow, and R. McMahon, “Control algorithm for permanent magnet generators evaluated on a wind turbine emulator test-rig,” in Proc. IET PEMD., 2014, pp. 1-7.
[25] J. R. de Oliveira and A. L. Andreoli, “Wind turbine emulator: A tool for experimental and computational study,” IEEE Latin Amer. Trans., vol. 19, no. 11, pp. 1832-1839, Nov. 2021.
[26] A. G. Abo-Khalil and D. C. Lee, “MPPT control of wind generation systems based on estimated wind speed using SVR,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1489-1490, March 2008.
[27] Y. Xia, K. H. Ahmed and B. W. Williams, “Wind turbine power coefficient analysis of a new maximum power point tracking technique,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1122-1132, March 2013.
[28] Z. M. Dalala, Z. U. Zahid, W. Yu, Y. Cho, and J. S. Lai, “Design and analysis of an MPPT technique for small-scale wind energy conversion systems,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 756-767, Sept. 2013.
[29] D. Choi, S. Byun, and Y. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, pp. 1-4, Jan. 2014.
C. Permanent-magnet Synchronous Motors
[30] S. Lee, “Closed-loop estimation of permanent magnet synchronous motor parameters by PI controller gain tuning,” IEEE Trans. Energy Convers., vol. 21, no. 4, pp. 863-870, Dec. 2006.
[31] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for an SPMSM-driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, 2011.
[32] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive System, 3rd ed. New York: Wiley-IEEE, 2013.
[33] B. J. Kang and C. M. Liaw, “A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 956-967, 2001.
[34] A. Lekshmi, R. Sankaran, and S. Ushakumari, “Comparison of performance of a closed loop PMSM drive system with modified predictive current and hysteresis controllers,” in Proc. IEEE ICEMS., 2008, vol. 1, no. 1, pp. 2876-2881.
[35] A. V. Sant and K. R. Rajagopal, “PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4672- 4675, 2009.
[36] S. Li and H. Gu, “Fuzzy adaptive internal model control schemes for PMSM speed- regulation system,” IEEE Trans. Ind. Informat., vol. 8, no. 4, pp. 767-779, Nov. 2012.
[37] T. Tarczewski and L. Grzesiak, “Constrained state feedback speed control of PMSM based on model predictive approach,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3867-3875, 2015.
[38] A. Nasiri, “Full digital current control of permanent magnet synchronous motors for vehicular applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1531-1537, July 2007.
[39] A. Mora, A. Orellana, J. Juliet, and R. Cardenas, “Model predictive torque control for torque ripple compensation in variable speed PMSMs,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4584-4592, 2016.
[40] S. Y. Cho, W. G. Shin, J. S. Park, and W. H. Kim, “A torque compensation control scheme of PMSM considering wide variation of permanent magnet temperature,” IEEE Trans. Magn., vol. 55, no. 2, pp. 1-5, Feb. 2019.
[41] F. Aghili, M. Buehler, and J. M. Hollerbach, “Optimal commutation laws in the frequency domain for PM synchronous direct-drive motors,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1056-1064, 2000.
[42] C. C. Liaw, C. M. Liaw, H. C. Chen, Y. C. Chang, and C. M. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC., 2003, vol. 2, pp. 1045-1051.
[43] D. S. Maric, S. Hiti, C. C. Stancu, and J. M. Nagashima, “Two improved flux weakening schemes for surface mounted permanent magnet synchronous machine drives employing space vector modulation,” in Proc. IEEE IECON., 1998, vol. 1, pp. 508-512.
[44] S. Chaithongsuk, B. N. Mobarakeh, J. P. Caron, N. Takorabet, and F. M. Tabar, “Optimal design of permanent magnet motors to improve field-weakening performance in variable speed drives,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2484-2494, 2012.
D. Switched-reluctance Machines
(a) Switched-reluctance motors
[45] T. J. E. Miller, Switched Reluctance Motors and Their Control, Clarendon Press, Oxford, 1993.
[46] Ji-Young Lee, Byoung-Kuk Lee, Tao Sun, Jung-Pyo Hong, and Woo-Taik Lee, “Dynamic analysis of toroidal winding switched reluctance motor driven by 6-switch converter,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1275-1278, April 2006.
[47] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc.,2014.
[48] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, Jan.-Feb. 2000.
[49] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[50] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017.
[51] B. Fahimi, A. Emadi, and R. B. Sepe Jr, “A switched reluctance machine-based starter/alternator for more electric cars,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 116-124, 2004.
[52] N. Schofield and S. Lomg, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
[53] C. Roux and M. M. Morcos, “On the use of a simplified model for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 17, no. 3, pp. 400-405, Sept. 2002.
[54] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, Sep. 2003.
[55] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[56] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[57] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, Feb. 2009.
[58] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Elect. Power Appl., vol. 3, no. 5, pp. 453-460, Sep. 2009.
[59] X. Li and P. Shamsi, “Model predictive current control of switched reluctance motors with inductance auto-calibration,” IEEE Trans. Elect. Power Appl., vol. 63, no. 6, pp. 3934-3941, Jun. 2016.
[60] S. S. Ahmad and G. Narayanan, “Linearized modeling of switched reluctance motor for closed-loop current control,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3146-3158, July-Aug. 2016.
[61] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, Dec. 1997.
[62] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[63]H. Hannoun, M. Hilairet, and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[64] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling,” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
[65] J. Ye, B. Bilgin, and A. Emadi, “An extended-speed low-ripple torque control of switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1457-1470, March 2015.
[66] G. Fang, J. Ye, D. Xiao, Z. Xia, and A. Emadi, “Low-ripple continuous control set model predictive torque control for switched reluctance machines based on equivalent linear SRM model,” IEEE Trans Ind. Electron., vol. 69, no. 12, pp. 12480-12495, Dec. 2022.
[67] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched-reluctance motor by DC link voltage boosting,” in Proc. Inst. Elect. Eng., vol. 140, no. 5, pp. 316-322, Sept. 1993.
[68] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
[69] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714- 4727, 2015.
(b) Switched-reluctance generators
[70] A. Radun, “Generating with the switched reluctance motor,” in Proc. IEEE APEC., 1994, vol. 1, pp. 41-47.
[71] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[72] A. K. Jain and N. Mohan, “SRM power converter for operation with high de-magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005.
[73] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[74] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury, and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5.
[75] S. Narla, Y. Sozer, and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” IEEE Trans. Ind. Appl., vol. 48, no. 5, pp. 1452-1459, Sept.-Oct. 2012.
[76] D. W. Choi, S. I. Byun, and Y. H. Cho, “A study on the maximum power control method of switched reluctance generator for wind turbine,” IEEE Trans. Magn., vol. 50, no. 1, 2014.
[77] T. A. D. S. Barros, P. J. D. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, Nov. 2017.
[78] P. J. D. Santos Neto, T. A. D. Santos Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, 2018.
[79] H. Chen, D. Xu, and X. Deng, “Control for power converter of small-scale switched reluctance wind power generator,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3148-3158, April 2021.
[80] F. P. Scalcon, G. Fang, C. J. V. Filho, H. A. Gründling, R. P. Vieira, and B. Nahid-Mobarakeh, “A review on switched reluctance generators in wind power applications: fundamentals, control and future trends,” IEEE Access, vol. 10, pp. 69412-69427, 2022.
(c) Converters for switched-reluctance machines
[81] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[82] T. Ishikawa, Y. Hashimoto and N. Kurita, “Optimum design of a switched reluctance motor fed by asymmetric bridge converter using experimental design method,” IEEE Trans. Magn., vol. 50, no. 2, Feb. 2014.
[83] X. D. Xue, K. W. E. Cheng and Y. J. Bao, “Control and integrated half bridge to winding circuit development for switched reluctance motors,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 109-116, Feb. 2014.
[84] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate. “SRM converter topologies for EV application: state of the technology,” in Proc. IEEE ISIE., 2017, pp. 861-866.
E. Energy Storage Systems
[85] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[86] A. Sattar, A. Al-Durra, C. Caruana, M. Debouza, and S. M. Muyeen, “Testing the performance of battery energy storage in a wind energy conversion system,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3196-3206, Mar/June 2020.
[87] X. Li and S. Wang, “Energy management and operational control methods for grid battery energy storage systems,” CSEE J. Power Energy Syst., vol. 7, no. 5, pp. 1026-1040, Sept. 2021.
[88] M. E. Choi, S. W. Kim and S. W. Seo, “Energy management optimization in a battery/ supercapacitor hybrid energy storage system,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 463-472, March 2012.
[89] J. Rocabert, R. Capó-Misut, R. S. Muñoz-Aguilar, J. I. Candela, and P. Rodriguez, “Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1853-1862, Mar./ Apr. 2019.
[90] F. Diaz-Gonzalez, F. D. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
[91] S. Kotra and M. K. Mishra, “Design and stability analysis of DC microgrid with hybrid energy storage system,” IEEE Trans. Sustain. Energy, vol. 10, no. 3, pp. 1603-1612, 2019.
F. Interface Power Converters
[92] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics Converters, Applications and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[93] S. Pay and Y. Daly, “Effectiveness of battery-supercapacitor combination in electric vehicles,” in Proc. IEEE PTC., vol. 3, pp. 1-6, 2003-Jun.
[94] F. Blaabjerg, F. Iov, R. Teodorescu and Z. Chen, “Power electronics in renewable energy systems,” in Proc. IEEE EPE-PEMC, pp. 1-17, 2006.
[95] L. Palma and P. N. Enjeti, “A modular fuel cell modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437- 1443, Jun. 2009.
[96] H. J. Kim and B. M. Han, “Operation analysis of bipolar DC distribution system with new half-bridge voltage balancer,” in Proc. IEEE ICBEST., 2015, pp. 62-67.
[97] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. vol. 30, no. 1, pp. 273-284, 2015.
[98] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC/DC converters: A comprehensive review of voltage-boosting techniques topologies and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
G. PWM Inverters
[99] S. J. Chiang and C. M. Liaw. “Single-phase three-wire transformerless inveter,” IEE Proc. Electr. Power Appl., vol. 141, No. 4, pp. 197-205, 1994.
[100] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, Mar. 2008.

[101] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Pérez, “A survey on cascaded multilevel inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197-2206, July 2010.
[102] C. Hou and P. Cheng, “Experimental verification of the active front-end converters dynamic model and control designs,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1112-1118, April 2011.
[103] R. Teodorescu, F. Blaabjerg, M. Liserre, and P.C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc. Electr. Power Appl., vol. 153, no. 5, pp. 750-762, 2006.
[104] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, October 2011.
[105] F. Wang, J. L. Duarte, and M. A. M. Hendrix, “Grid-interfacing converter systems with enhanced voltage quality for microgrid application—concept and implementation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3501-3513, Dec. 2011.
[106] J. A. Mueller, M. Rasheduzzaman, and J. W. Kimball, “A model modification process for grid-connected inverters used in islanded microgrids,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 240-250, March 2016.
[107] J. Xu, H. Qian, S. Bian, Y. Hu, and S. Xie, "Comparative study of single-phase phase-locked loops for grid-connected inverters under non-ideal grid conditions," CSEE J. Power Energy Syst., vol. 8, no. 1, pp. 155-164, Jan. 2022.
H. Isolated DC/DC converter
[108] J. H. Jung, H. S. Kim, M. H. Ryu, and J. -W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, April 2013.
[109] Y. Wei, Q. Luo and H. A. Mantooth, “LLC and CLLC resonant converters based DC transformers (DCXs): characteristics, issues, and solutions,” CPSS Trans. Power Electron. Appl., vol. 6, no. 4, pp. 332-348, Dec. 2021.
[110] J. Hsu, M. Ordonez, W. Eberle, M. Craciun, and C. Botting, “LLC synchronous rectification using resonant capacitor voltage,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10970- 10987, Nov. 2019.
[111] Y. Wei, Q. Luo and H. A. Mantooth, “Synchronous rectification for LLC resonant converter: an overview,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 7264-7280, Jun. 2021.
[112] C. Zhang, P. Li, Z. Kan, X. Chai, and X. Guo, “Integrated half-bridge CLLC bidirectional converter for energy storage systems,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3879- 3889, May 2018.
[113] Z. Zhang, C. Liu, M. Wang, Y. Si, Y. Liu, and Q. Lei, “High-efficiency high-power-density CLLC resonant converter with low-stray-capacitance and well-heat-dissipated planar transformer for EV on-board charger,” IEEE Trans. Power Electron., vol. 35, no. 10, pp. 10831-10851, Oct. 2020.
H. Switch-mode Rectifiers
(a) Single-phase SMRs
[114] S. H. Li and C. M. Liaw, “Development of three-phase switch-mode rectifier using single- phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, Jan. 2004.
[115] L. Huber, J. Yungtaek, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
[116] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833-1843, July-Aug. 2011.
[117] N. Vamanan and V. John, “Dual comparison one cycle control for single phase AC to DC converters,” IEEE Trans. Ind Appl., vol. 52, no. 4, pp. 3267-3278, July-Aug. 2016.
(b) Three-phase SMRs
[118] F. A. B. Batista and I. Barbi, “Space vector modulation applied to three-phase three- switch two-level unidirectional PWM rectifier,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2245-2252, Nov. 2007.
[119] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
[120] J. Ge, Z. Zhao, L. Yuan, T. Lu and F. He, “Direct power control based on natural switching surface for three-phase PWM Rectifiers,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 2918-2922, June 2015.
[121] J. S. Lee and K. B. Lee, “Carrier-based discontinuous PWM method for Vienna rectifiers,” IEEE Trans. Power Electron., vol. 30, no. 6, pp. 2896-2900, June 2015,
[122] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015.
[123] T. Gao, S. Zhang, S. Zhang and J. Zhao, “A dynamic model and modified one-cycle control of three-level front-end rectifier for neutral point voltage balance,” IEEE Access, vol. 5, pp. 2000-2010, 2017.
[124] C. Wang, J. Liu, H. Cheng, Y. Zhuang, and Z. Zhao, “A modified one-cycle control for Vienna rectifiers with functionality of input power factor regulation and input current distortion mitigation,” Energies, vol. 12, no. 17, pp. 3375, Sep. 2019.
I. Others
[125] S. P. Lin, “A wind switched-reluctance generator based bipolar DC microgrid with plug-in auxiliary energy support,” M.S. thesis, Dept. Electr. Eng., Natl. Tsinghua Univ., Hsinchu, R.O.C., 2022.
[126] P. H. Jhou, “A wind switched-reluctance generator based grid-connected micro-grid,” M.S. thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, R.O.C., 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *