帳號:guest(13.58.176.91)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周子權
作者(外文):Chou, Tzu-Chuan
論文名稱(中文):具可重組介面轉換器風機/光伏為主之直流微電網
論文名稱(外文):WIND/PV BASED DC MICROGRID WITH RECONFIGURABLE INTERFACE CONVERTER
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
口試委員(中文):曾萬存
徐國鎧
口試委員(外文):Tseng, Wan-Tsun
Xu, Guo-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061503
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:130
中文關鍵詞:開關式磁阻電機風力發電機直流微電網太陽光伏電池儲能系統負載變頻器切換式整流器換相移位電壓控制電流控制強健控制前饋控制電網至微電網微電網至電網車輛至微電網微電網至車輛
外文關鍵詞:Switched-reluctance machinewind generatorDC microgridPVBESSload inverterSMRcommutation shiftingvoltage controlcurrent controlrobust controlfeedforward controlG2MM2GV2MM2V
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文旨在建構一具可重組介面轉換器之風機/光伏直流微電網,風力開關式磁阻發電機由變頻器供電感應馬達建置之風機模擬器驅動,並採用高切換彈性之非對稱橋式轉換器。採用強健之磁滯電流控制,以及妥予設計之電壓控制器,得額定轉速 (6000轉) 下穩定之48伏直流輸出電壓。為降低反電動勢對開關磁阻發電機發電特性之影響,採行適當之換相移位,使風力開關磁阻發電機能在廣轉速和負載變動範圍下可靠運行。其他有關增能研究研究,包含換相移位對直流鏈電流漣波降低之影響,其亦間接降低開關磁阻發電機之轉矩漣波,以及在單相斷臂故障下之容錯能力等。此外,納入模擬光伏系統為另一再生能源輸入。具三單元之交錯式直流-直流升壓轉換器用以接受兩種再生能源,建立直流微電網400伏之共同直流匯流排。交錯組數由再生能源輸入狀況自動決定之。除電流及電壓回授控制器外,引入輸入電壓前饋控制,使開關磁阻發電機輸出電壓對變動之輸入電壓具快速調節排除能力。為維持直流微電網之供電可靠性,系統中建置妥適設計及控制之蓄電池儲能系統。
在再生能源和電池儲能不足以支撐微電網所需時,可將交錯式升壓轉換器重配為全橋切換式整流器,實現電網至微電網之供能操作,微電網可從電網獲得能源支撐。由於全橋切換式整流器為雙向性,亦從事微電網至電網之操控,並進行性能實測評估。為進行負載測試,共同直流匯流排上亦配有所建立三相三線負載變頻器。此外,應用既有電動車磁阻開關式馬達驅動系統進行並聯,實驗探究隔離車輛對微電網和微電網對車輛間之互聯操作特性。以一些測量結果展示,正常之運行及良好之性能。
This thesis focuses on the development of a DC microgrid based on wind switched-reluctance generator (SRG)/photovoltaic (PV) using reconfigurable interface boost converter. The wind SRG is driven by an inverter-fed induction motor (IM) as prime mover. The SRG adopts the asymmetric bridge converter for its high PWM switching flexibility. The robust hysteresis current control scheme and the properly designed voltage controller to ensure well-regulated DC output voltage of 48V at rated speed (6000rpm). To mitigate the effects of back electromotive force (back-EMF) on the generation of SRG, the commutation shifting approach is employed. This enables the wind SRG to operate reliably under variations of driven speed and load. Additional enhancements to the SRG performance include investigating the impact of commutation shift on DC-link current ripple, which indirectly reduces the torque ripple, and assessing the fault-tolerant capability in the event of single-phase fault. In addition, an emulated photovoltaic (PV) is added as the second renewable source. A three-cell reconfigurable interleaved boost converter is proposed to accept the wind SRG and PV and establish common DC-bus voltage of 400V in the microgrid. The interleaving cell number selection is automatically determined according to the input renewable power conditions. Alongside carefully designed current and voltage feedback controllers, an input voltage feedforward controller is incorporated to ensure rapid voltage regulation in response to fluctuations in the input voltages. To enhance the power supplying reliability, a battery energy storage system (BESS) is established and integrated into the developed microgrid.
As the renewable energy and the battery stored energy are insufficient to support the established DC microgrid, the interleaved boost converter is reconfigured into an H-bridge switch-mode rectifier (SMR) to achieve grid-to-microgrid (G2M) operation. The microgrid can be supported energy from the utility grid. Thanks to the bidirectional SMR, the microgrid-to-grid (M2G) operation is also conductible and evaluated. For making load testing, a three-phase three-wire (3P3W) load inverter is also established. In addition, an available electric vehicle (EV) switched-reluctance motor (SRM) drive is employed for experimentally exploring isolated vehicle-to-microgrid (V2M) and microgrid-to-vehicle (M2V) inter-connected operations. The successful operation and satisfactory performance are demonstrated by some measured results.
ABSTRACT i
ACKNOWLEDGEMENT ii
LIST OF CONTENTS iii
LIST OF FIGURES vii
LIST OF TABLES xiv
LIST OF ABBREVIATIONS xv
LIST OF SYMBOLS xviii
CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Survey 2
A. Microgrids 2
B. Switched-reluctance Machine 3
C. Interface DC/DC Converter and Reconfigurable Schematic 5
D. Switch-mode Rectifiers 6
E. Inverter 7
F. Energy Storage System 8
1.3 Contribution of this Thesis 9
1.4 Organization of this Thesis 10
CHAPTER 2 FUNDAMENTALS OF MICROGRID AND SWITCHED-RELUCTANCE MACHINE 12
2.1 Introduction 12
2.2 Microgrid Systems 12
A. Microgrid Classifications 12
B. Controls of Microgrids 14
C. Voltage Level Consideration for DC Microgrid 16
2.3 Wind Energy Systems 17
A. Wind Generator System 17
B. Governing Equations 18
C. Some Typical Wind Energy Systems 19
2.4 Photovoltaic Systems 21
A. Governing Equation for a PV Cell 21
B. Parameter Determination 22
C. I-V Curves and Effects of Temperature and Irradiance 23
2.5 Battery Energy Storage Systems 24
2.6 Interface Converters 28
A. DC-DC Converters 28
B. Switch-mode Rectifiers 30
2.7 Switched-reluctance Machines 33
A. Structural Features 33
B. Operation Mode 35
C. Some Existing SRM Converters 35
CHAPTER 3 ESTABLISHMENT OF EXPERIMENTAL WIND SWITCHED RELUCTANCE GENERATOR 42
3.1 Introduction 42
3.2 Basics of Switched-Reluctance Machine 42
3.2.1 Governing Equations 43
3.2.2 Ripple Characteristics 44
3.3 Power Stage Establishment 45
3.3.1 System Configuration 45
3.2.2 Digital Control Environment 47
3.3.3 Interfacing and Sensing Circuits 47
3.4 Control Schemes 50
3.4.1 Current Control Scheme 50
3.4.2 Voltage Control Schemes 51
3.5 Commutation Scheme 55
3.5.1 Manual Commutation Angle Setting 56
3.5.2 Dynamic Shifting 62
3.5.3 Performance of the DSC 63
3.6 Measured Results 64
3.6.1 Varied Generator Driven Speed 64
3.6.2 Regulation Response 64
3.7 Fault Tolerant Characteristic 66
CHAPTER 4 WIND SRG AND PV POWERED DC MICROGRID 68
4.1 Introduction 68
4.2 Wind SRG with Followed Interleaved Boost Converter 68
4.2.1 System Configuration 68
4.2.2 Interleaved Boost Converter 68
4.2.3 Interleaving Operation 69
4.2.4 Control Schemes 71
4.2.5 Measured Results 73
4.3 Battery Energy Storage System 76
4.3.1 Discharging Mode 76
4.3.2 Charging Mode 79
4.3.3 Measured Results 80
4.4 PV Powered DC Microgrid 82
4.4.1 Simulated PV Arrays 82
4.4.2 Power Circuit 83
4.4.3 MPPT Control Scheme 83
4.4.4 Measured Results 85
4.5 DC Microgrid with Integrated Wind and PV Sources 87
4.5.1 Power Circuit 87
4.5.2 Control Schemes 88
4.5.3 Measured Results 89
CHAPTER 5 G2M/M2G AND V2M/M2V OPERATIONS OF THE DEVELOPED DC MICROGRID 93
5.1 Introduction 93
5.2 Bidirectional G2M/M2G Operations 93
5.2.1 G2M Operation via H-bridge SMR 93
5.2.2 M2G Operation via H-bridge Inverter 102
5.3 Three-Phase Load Inverter 105
5.3.1 System Configuration 105
5.3.2 Control Scheme 106
5.3.3 Measured Results 108
5.4 Bidirectional M2V/V2M Operations 112
A. CLLC Resonant Converter 113
B. Control Scheme 113
C. V2M EV Discharging Operation 114
D. M2V Charging EV Operation 116
CHAPTER 6 CONCLUSIONS 118
REFERENCES 119
APPENDIX A CHARACTERISTICS AND STRUCTURE OF THE EMPLOYED SWITCHED-RELUCTANCE MACHINE 130



REFERENCES
A. Microgrids
[1] Q. Xu, X. Hu, P. Wang, J. Xiao, P. Tu, C. Wen, and M. Y. Lee, “A decentralized dynamic power sharing strategy for hybrid energy storage system in autonomous DC microgrid,” IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5930–5941, Jul. 2017.
[2] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214–2223, May 2013.
[3] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. 12th Int. Conf. Optim. Elect. Electron. Equip., pp. 1369–1380, 2010.
[4] A. Merabet, K. T. Ahmed, H. Ibrahim, R. Beguenane, and A. M. Y. Ghias, “Energy management and control system for laboratory scale microgrid based wind-PV-battery,” IEEE Trans. Sustain. Energy, vol.8, no. 1, pp. 145–154, Jan. 2017.
[5] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512–2527, Sep. 2011.
[6] Q. Xu, P. Wang and C. Wen, “A decentralized control strategy for economic operation of autonomous ac, dc, and hybrid ac/dc microgrids,” IEEE Trans. Energy Convers., vol. 32, no. 4, pp. 1345–1355, Dec. 2017.
[7] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- Part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May 2016.
[8] B. Zahedi and L. E. Norum, “Modeling and simulation of all-electric ships with low-voltage DC hybrid power systems,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4525–4537, Oct. 2013.
[9] Z. Shajari, J. M. Guerrero and M. H. Javidi, “Operation management for next-generation of MVDC shipboard microgrids,” in Proc. Int. Conf. Smart Energy Syst. Technol. (SEST), Istanbul, Turkey, 7-9 Sept. 2020.
[10] M. Abul Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid- system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157- 171, Mar. 2018.
[11] A. Matsumoto, A. Fukui, T. Takeda, and M. Yamasaki, “Development of 400-Vdc output rectifier for 400-Vdc power distribution system in telecom sites and data centers,” in Proc. 2010 IEEE INTELEC, Orlando, pp. 1-6, 2010.
[12] D. Marquet, O. Foucault, J. -M. Pichon, K. Hirose, C. Bianco, and R. Hockley “Telecom operator’s to accelerate the migration towards 400 Volt direct current,” in Proc. 2017 IEEE INTELEC, pp. 196-203, 2017.
[13] K. Hirose, “DC microgrid for telecommunications service and related application,” in Proc. 2018 IPEC-Niigata 2018-ECCE Asia, Niigata, Japan, pp. 593-597, May 2018.
[14] S. Anand and B. G. Fernandes, “Optimal voltage level for DC microgrids,” in Proc. IEEE IECON, 2010, pp. 3034-3039.
[15] Q. Xu, N. Vafamand, L. Chen, T. Dragicevic, L. Xie, and F. Blaabjerg, “Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 2, pp. 1205–1221, Apr. 2021.
[16] G. AlLee and W. Tschudi, “Edison redux: 380 Vdc brings reliability and efficiency to sustainable data centers,” IEEE Power Energy Mag., vol. 10, no. 6, pp. 50–59, Nov./Dec. 2012.
[17] J. Y. Lee, Y. P. Cho and J. H. Jung, “Single-stage voltage balancer with high-frequency isolation for bipolar LVDC distribution system,” IEEE Trans. Ind. Electron., vol. 67, no. 5, pp. 3596-3606, May 2020.
[18] X. Zhao, B. Li, Q. Fu, S. Mao, D. Xu, J. I. Leon, and G. Franquelo, “DC solid state transformer based on three-level power module for interconnecting MV and LV DC distribution systems,” in IEEE Trans. Power Electron., vol. 36, no. 2, pp. 1563-1577, Feb. 2021.
[19] T. Dragičević, X. N. Lu, J. C. Vasquez and J. M. Guerrero, “DC microgrids-Part I: a review of control strategies and stabilization techniques,” IEEE Trans. Power Electron., vol. 31, no. 7 ,, pp. 4876-4891, July 2016.
[20] T. Dragičević, J. M. Guerrero, J. C. Vasquez, and D. Škrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, Feb. 2014.
[21] S. M. Chowdhury, M. O. Badawy, Y. Sozer, and J. A. D. A. Garcia, “A novel battery management system using the duality of the adaptive droop control theory,”, IEEE Trans. Ind. Appl., vol. 55, no. 5, pp. 5078-5088, Sep./Oct. 2019.
[22] P. Sanjeev, N. P. Padhy, and P. Agarwal, “Peak energy management using renewable integrated DC microgrid,” IEEE Trans. Smart Grid, vol. 9, no. 5, pp. 4906-4917, Sep. 2018.
[23] D. E. Olivares, C. A. Cañizares and M. Kazerani, “A centralized energy management system for isolated microgrids,”, IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1864-1875, Jul. 2014.
[24] Y. S. Roh, Y. J. Moon, J. Park, M. G. Jeong, and C. Yoo, “A multiphase synchronous buck converter with a fully integrated current balancing scheme,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 5159-5169, Sep. 2015.
[25] A. Bidram and A. Davoudi, “Hierarchical structure of microgrids control system,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1963-1976, Dec. 2012.
[26] J. M. Guerrero, M. Chandorkar, T. Lee, and P. C. Loh, “Advanced control architectures for intelligent microgrids—Part I: Decentralized and hierarchical control,”, IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1254-1262, Apr. 2013.
[27] M. Kwon and S. Choi, “Control scheme for autonomous and smooth mode switching of bidirectional DC-DC converters in a DC microgrid,” IEEE Trans. Power Electron., vol. 33, no. 8, pp. 7094-7104, Aug. 2018.
[28] P. Wang, C. Jin, D. Zhu, Y. Tang, P. C. Loh, and F. H. Choo, “Distributed control for autonomous operation of a three-port AC/DC/DS hybrid microgrid,”, IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 1279-1290, Feb. 2015.
B. Switched-reluctance Machine
[29] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc. 2002.
[30] P. C. Sen, Principle of Electric Machines and Power Electronics, 3rd ed. Canada: Wiley John & Sons, Inc., 2014.
[31] T. J. E. Miller, Switched reluctance motors and their control, Oxford, Clarendon Press, 1993.
[32] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[33] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: A comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, Mar. 2017.
[34] M. N. Recheis, B. Schweighofer, P. Fulmek and H. Wegleiter, “Selection of magnetic materials for bearingless high-speed mobile flywheel energy storage systems, ” IEEE Trans. Magn., vol. 50, no. 4, pp. 1-4, April 2014.
[35] K. W. Hu, P. H. Yi and C. M. Liaw, “An EV SRM drive powered by battery/supercapacitor with G2V and V2H/V2G capabilities,”, IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[36] A. Chiba, K. Kiyota, N. Hoshi, M. Takemoto, and S. Ogasawara, “Development of a rare-earth-free SR motor with high torque density for hybrid vehicles,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 175-182, Mar. 2015.
[37] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high- speed 45-kW switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, Feb. 2017.
[38] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[39] B. Bilgin, A. Emadi and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
[40] Y. Kuwahara, H. Ono, T. Kosaka, N. Matsui, and H. Shimada, “Precise pulsewise current drive of SRM under PWM control,” in Proc. IEEE PEDS, 2013, pp. 1049-1054.
[41] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-3726, 2014.
[42] S. Schulz and K. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, Jul./Aug. 2003.
[43] H. Hannoun, M. Hilairet and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[44] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[45] R. Mikail, I. Husain, M. S. Islam, Y. Sozer, and T. Sebastian, “Four-quadrant torque ripple minimization of switched reluctance machine through current profiling with mitigation of rotor eccentricity problem and sensor errors,” IEEE Trans. Ind. Appl., vol. 51, no. 3, pp. 2097-2104, May/Jun. 2015.
[46] J. Ye, B. Bilgin and A. Emadi, “An offline torque sharing function for torque ripple reduction in switched reluctance motor drives,” IEEE Trans. Energy Convers., vol. 30, no. 2, pp. 726-735, Jun. 2015.
[47] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[48] J. Furqani, M. Kawa, K. Kiyota, and A. Chiba, “Current waveform for noise reduction of a switched reluctance motor under magnetically saturated condition,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 213-222, Jan./Feb. 2018.
[49] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, Sep. 2009.
[50] T. Ishikawa, Y. Matsumoto, T. Kurishima, H. Goto, H. Funato, and J. Haruna, “Novel voltage boost drive circuit for switched reluctance motor with torque improvement excitation method,” in Proc. IEEE IPEMC-ECCE, 2020, pp. 478-483.
[51] K. Urase, N. Yabu, K. Kiyota, H. Sygimoto, A. Chiba, M. Takemoto, S. Ogasawara, and N. Hoshi, “Energy efficiency of SR and IPM generators for hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 2874-2883, July/Aug. 2015.
[52] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, Dec. 2005.
[53] Z. Yang, F. Shang, IP. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet induction and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
[54] P. N. Materu and R. Krishnan, “Estimation of switched reluctance motor losses,” IEEE Trans. Ind. Appl., vol. 28, no. 3, pp. 668-679, May/June 1992.
[55] T. A. D. S. Barros, P. J. D. S. Neto, P. S. N. Filho, A. B. Moreira, and E. R. Filho, “An approach for switched reluctance generator in a wind generation system with a wide range of operation speed,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8277-8292, Nov. 2017.
[56] I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched reluctance generators,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1062-1072. July 2006.
[57] P. J. D. S. Neto, T. A. D. S. Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind systems,”, IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, Mar. 2018.
[58] I. Husain, A. Radun and J. Nairus, “Fault analysis and excitation requirements for switched reluctance generator,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 67-72, Mar. 2002.
[59] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[60] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: A comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, Nov./Dec. 1991.
[61] A. K. Jain and N. Mohan, “SRM power converter for operation with high de-magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005.
[62] S. Mir, I. Husain and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[63] A. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” in Proc. Conf. Rec. IEEE Ind. Appl. Soc. Annu. Meeting, vol. 1, pp. 886-889, Sep. 1991.
[64] H. Bagherian, M. Asgar and E. Afjei, “A new C- dump converter for bifilar winding switched reluctance motor,” 2nd Power Electronics Drive Systems and Technologies Conference, 2011.
[65] A. Takahashi, H. Goto, K. N akamura, T. Watanabe, and O. Ichinokura, “Characteristics of 8/6 switched reluctance generator excited by suppression resistor converter,” IEEE Trans. Magn., vol. 42, no. 10, pp. 3458-3460, Oct. 2006.
[66] J. Liu, L. Wang, L. Yi, G. Zhu, and X. Yin, “Optimization of SRM direct instantaneous torque control strategy based on improved firefly algorithm,” in Proc. IEEE Conf. Energy Internet Energy Syst. Integr., pp. 364-368, 2019.
[67] Y. H. Hu, C. Gan, W. P. Cao, C. S. Li, and S. Finney, “Split converter-fed SRM drive for flexible charging in EV /HEV applications,” IEEE Trans. Ind. Electron., vol. 62, no. 10, pp. 6085-6095, Oct. 2015.
[68] D. He, W. Cai, F. Yi, A. Clark, J. Liang, L. Gu, and B. Fahimi, “Control algorithm for soft start of split-ac-switched-reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5479-5488, Nov.-Dec. 2017.
C. Interface DC/DC Converter and Reconfigurable Schematic
[69] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: Wiley, 2003.
[70] Q. Wang, M. Cheng, Y. Jiang, Z. Chen, F. Deng, and Z. Wang, “DC electric springs with DC/DC converters,” in Proc. IEEE IPEMC-ECCE Asia, 2016, pp. 3268-3273.
[71] J. Wei and F. C. Lee, “Two-stage voltage regulator for laptop computer CPUs and the corresponding advanced control schemes to improve light-load performance,” in Proc. IEEE Appl. Power Electron. Conf. Exp., pp. 1294-1300, 2004.
[72] M. S. Bhaskar, P. Sanjeevikumar, F. Blaabjerg, V. Fedak, M. Cernat, and R. Kulkarni, “Non isolated and non-invertingCockcroft-Walton multiplier based hybrid 2nx interleaved boost converterfor renewable energy applications,” in Proc. IEEE PEMC, 2016, pp. 146-151.
[73] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers., vol. 30, no. 1, pp. 273-284, Mar. 2015.
[74] V. Yaramasu and B. Wu, “Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5308-5322, Oct. 2014.
[75] R. Hosoki and H. Koizumi, “High-step-up dc-dc converter using voltage multiplier cell with ripple free input current,” IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society., pp. 834-839, 2013.
[76] A. Ganjavi, H. Ghoreishy and A. A. Ahmad, “A novel single-input dual-out three- level DC- DC converter,” IEEE Trans. Ind. Electron., vol. 65, no. 10, pp. 8101-8111, Dec. 2018.
[77] J. S. Lee, K. B. Lee and F. Blaabjerg, “Open-switch fault detection method of an NPC converter for wind turbine systems,” Proc. IEEE Energy Convers. Congr. Expo., pp. 1696-1701, Sep. 2013.
[78] S. Rezayi, H. Iman-Eini, M. Hamzeh, S. Bacha, and S. Farzamkia, “Dual-output DC/DC boost converter for bipolar DC microgrids,” IET Renew. Power Gener., vol. 13 Iss. 8, pp. 1402-1410, 2019.
[79] C.-H. Chang, C.-A. Cheng and H.-L. Cheng, “An interleaved buck-cascaded buck-boost inverter for PV grid-connection applications,” in Proc. IPEC-Niigata 2018 -ECCE Asia), May 20-24, 2018.
[80] Prajof P. and V. Agarwal, “Novel boost-SEPIC type interleaved DC-DC converter for low- voltage bipolar DC microgrid-tied solar PV applications,” in Proc. IEEE 42nd PVSC, 2015, pp. 1-6.
[81] S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “A plug and play operational approach for implementation of an autonomous-micro-grid system,” IEEE Trans. Ind. Informat., vol. 8, no. 3, pp. 615-629, Aug. 2012.
[82] S. Li, A. T. L. Lee, S. C. Tan, and S. Y. R. Hui, “Plug-and-play voltage ripple mitigator for DC links in hybrid AC-DC power grids with local bus-voltage control,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 687-698, Jan. 2018.
[83] H. Tao, J. L. Duarte and M. A. M. Hendrix, “Multiport converters for hybrid power sources,” in Proc. IEEE PESC, 2008, pp. 3412-3418.
[84] J. Sakly, A. B. Abdelghani, I. Slama-Belkhodja, and H. Sammoud, “Reconfigurable DC/DC converter for efficiency and reliability optimization,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 1216-1224, Sep. 2017.
[85] S. R. Meher, S. Banejee, B. T. Vankayalapati, and R. K. Singh, “A reconfigurable on-board power converter for electric vehicle with reduced switch count,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3760-3772, Apr. 2020.
[86] H. K. Jahan, F. Panahandeh and M. Abapour, “Reconfigurable multilevel inverter with fault-tolerant ability,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7880-7893, Sep. 2018.
[87] L. Molgonyana, K. Smith and S. Galloway, “Reconfigurable low voltage direct current charging network for plug-in electric vehicles,” IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 5458-5467, Sep. 2019.
D. Switch-mode Rectifiers
[88] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
[89] P. Das, M. Pahlevaninezhad and G. Moschopoulos, “Analysis and design of a new ac–dc single-stage full-bridge pwm converter with two controllers,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 4930-4946, 2013.
[90] L. Huber, Y. Jang and M. M Jovanović, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 1381-1390, May 2008.
[91] P. Kong, S. Wang and F. C. Lee, “Common mode EMI noise suppression in bridgeless boost PFC converter,” in Proc. IEEE APEC, 2007, pp. 929-935.
[92] M. H. Park, J. Baek, Y. H. Jeong, and G. W. Moon, “An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10610-10618, Nov. 2019.
[93] Y. Tang, W. Ding and A. Khaligh, “A bridgeless totem-pole interleaved PFC converter for plug-in electric vehicles,” in Proc. IEEE APEC Expo., 2016, pp. 440-445.
[94] V. Monteiro, J. G. Pinto and J. L. Afonso, “Operation modes for the electric vehicle in smart grids and smart homes: present and proposed modes,” IEEE Trans. Veh. Technol., vol. 65, no. 3, pp. 1007-1020, Mar. 2016.
[95] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June 2004.
[96] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems- part I,” IEEE Trans. Power Electron., vol. 1, no. 1, pp. 176-198, Jan. 2013.
[97] S. Gangavarapu and A. K. Rathore, “Three-phase buck-boost derived PFC converter for more electric aircraft,” IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6264-6275, July 2019.
[98] S. Gangavarapu and A. K. Rathore, “A three-phase single-sensor-based Cuk-derived PFC converter with reduced number of components for more electric aircraft,” IEEE Trans. Transpot. Electrific., vol. 6, no. 4, pp. 1767-1779, Dec. 2020.
[99] T. B. Soeiro, T. Friedli and J. W. Kolar, “Swiss rectifier- a novel three-phase buck-type PFC topology for electric vehicle battery charging,” in Proc. IEEE APEC, pp. 2617-2624, 2012.
[100] L. Schrittwieser, J. W. Kolar and T. B. Soeiro, “Novel Swiss rectifier modulation scheme preventing input current distortions at sector boundaries,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5771-5785, July 2017.
[101] M. A. Ahmed, J. D. Dasika, M. Saeedifard, and O. Wasynczuk, “Interleaved Swiss rectifiers for fast EV/PHEV battery chargers,” in Proc. IEEE APEC. Expo., 2014, pp. 3260-3265.
[102] M. Alam, W. Eberle, D. S. Gautam, C. Botting, N. Dohmeier, and F. Musavi, “A hybrid resonant pulse-width modulation bridgeless ac–dc power factor correction converter,” IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1406-1415, Mar./Apr. 2017.
[103] J. S. Lee and K. B. Lee, “Performance analysis of carrier-based discontinuous PWM method for Vienna rectifiers with neutral-point voltage balance,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4075-4084, June 2016.
[104] L. Hang, M. Zhang, L. M. Tolbert, and Z. Lu, “Digitized feedforward compensation method for high-power-density three-phase Vienna PFC converter,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1512-1519, Apr. 2013.
[105] A. Marcos-Pastor, E. Vidal-Idiarte, A. Cid-Pastor, and L. Martínez-Salamero, “Loss-free resistor-based power factor correction using a semi-bridgeless boost rectifier in sliding-mode control,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5842-5853, Oct. 2015.
[106] N. Vamanan and V. John, “Dual comparison one cycle control for single phase AC to DC converters,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3267-3278, July/Aug. 2016.
[107] F. K. D. A. Lima, R. G. Araújo, F. L. Tofoli, and C. G. C. Branco, “A phase-locked loop algorithm for single-phase systems with inherent disturbance rejection,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9260-9267, Dec. 2019.
E. Inverter
[108] M. N. H. Khan, M. Forouzesh, Y. P. Siwakoti, L. Li, T. Kerekes, and F. Blaabjerg, “Transformerless inverter topologies for single-phase photovoltaic system: a comparative review,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 8, no. 1, pp. 805-835, Mar. 2020.
[109] E. Villanueva, P. Correa, J. Rodriguez and M. Pacas, “Control of a single-phase cascaded h-bridge multilevel inverter for grid-connected photovoltaic systems,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4399-4406, 2009.
[110] M. Pastura, S. Nuzzo, M. Kohler, and D. Barater, “Dv/dt filtering techniques for electric drives: review and challenges,” in Proc. IEEE IECON, 2019, pp. 7088-7093.
[111] E. Velander, G. Bohlin, Å. Sandberg, T. Wiik, F. Botling, M. Lindahl, G. Zanuso, and H. P. Nee, “An ultralow loss inductorless dv/dt filter concept for medium-power voltage source motor drive converters with SiC devices,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6072-6081, July 2018.
[112] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. Power Con., pp. 1659-1664, vol. 3, 2000.
[113] Y. Guan, J. M. Guerrero, X. Zhao, J. C. Vasquez, and X. Guo, “A new way of controlling parallel-connected inverters by using synchronous-reference-frame virtual impedance loop- part I: control principle,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4576-4593, June 2016.
[114] A. Abdelhakim, F. Blaabjerg and P. Mattavelli, “Modulation schemes of the three-phase impedance source inverters- Part I: classification and review,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6309-6320, Aug. 2018.
[115] C. Xia, M. Wang, Z. Song and T. Liu, “Robust model predictive current control of three-phase voltage source PWM rectifier with online disturbance observation,” IEEE Trans. Ind. Inform., vol. 8, no. 3, pp. 459-471, Aug. 2012.
[116] A. Nachiappan, K. Sundararajan and V. Malarselvam, “Current controlled voltage source inverter using hysteresis controller and PI controller,” Int. Conf. Power Signals Control. Comput. EPSCICON 2012, 2012.
[117] H. Tanaka, T. Tanaka, T. Wakimoto, E. Hiraki, and M. Okamoto, “Reduced-capacity smart charger for electric vehicles on single-phase three-wire distribution feeders with reactive power control,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 315-324, Jan./Feb. 2015.
[118] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
[119] J. Pou, J. Zaragoza, S. Ceballos, M. Saeedifard and D. Boroyevich, “A carrier-based pwm strategy with zero-sequence voltage injection for a three-level neutral-point-clamped converter,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 642-651, February 2012.
F. Energy Storage System
[120] J. Fang, Y. Tang, H. Li and X. Li, “A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 2820-2824, Apr. 2018.
[121] H. Zhou, T. Bhattacharya, D. Tran, T. S. T. Siew, and A. M. Khambadkone, “Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 923-930, Mar. 2011.
[122] E. O. Ogunniyi and H. Pienaar, “Overview of battery energy storage system advancement for renewable (photovoltaic) energy applications,” in Proc. DUE, pp. 233-239, 2017.
[123] P. Y. Long, A. Cavagnino, S. Vaschetto, C. Feng, and A. Tenconi, “Flywheel energy storage systems for power system application,” in Proc. IEEE 2017 ICCEP, 2017, pp. 492-501.
[124] T. D. Nguyen, K. -J. Tseng, S. Zhang, and H. T. Nguyen, "A Novel Axial Flux Permanent-Magnet Machine for Flywheel Energy Storage System: Design and Analysis", IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 3784-3794, Sept. 2011.
[125] S. Kumar, T. A. Lipo and B. Kwon, “A 32000r/min axial flux permanent magnet machine for energy storage with mechanical stress analysis,” IEEE Trans. Magn., vol. 52, no. 7, pp. 1-4, July 2016.
[126] H. Akagi and H. Sato, “Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 109-116, Jan. 2002.
[127] G. Cimuca, S. Breban, M. M. Radulescu, C. Saudemont, and B. Robyns, “Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 526-534, Jun. 2010.
[128] J. D. Park, C. Kalev and H. F. Hofmann, “Control of high-speed solid-rotor synchronous reluctance motor/generator for flywheel-based uninterruptible power supplies,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 3038-3046, Aug. 2008.
[129] R. Cárdenas, R. Peña, M. Pérez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, Aug. 2006.
[130] C.-Y. Ho, J.-C. Wang, K.-W. Hu, and C.-M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, Jan. 2019.
[131] N. Tănase and A. M. Morega, “Passive magnetic bearings for flywheel energy storage- numerical design,” in Proc. IEEE 2014 ICATE, 2014, pp. 1-4.
[132] J. Rocabert, R. Capó-Misut, R. S. Muñoz-Aguilar, J. I. Candela, and P. Rodriguez, “Control of energy storage system integrating electrochemical batteries and supercapacitors for grid- connected applications,” IEEE Trans. Ind. Appl., vol. 55, no. 2, pp. 1853-1862, Mar./Apr. 2019.
[133] V. Narayana, A. K. Mishra and B. Singh, “Design of SRM driven BESS based PV powered water pumping system,” Proc.7th Power India International Conference (PIICON), pp. 1-6, 2016.
[134] K. Sun, L. Zhang, Y. Xing, and J. M. Guerrero, “A distributed control strategy based on DC bus signaling for modular photovoltaic generation systems with battery energy storage,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 3032-3045, Oct. 2011.
[135] Y. Riffonneau, S. Bacha, F. Barruel, and S. Ploix, “Optimal power flow management for grid-connected PV systems with batteries,” IEEE Trans. Sustain. Energy, vol. 2, no. 3, pp. 309-20, 2011.
[136] A. Sattar, A. Al-Durra, C. Caruana, M. Debouza, and S. M. Muyeen, “Testing the performance of battery energy storage in a wind energy conversion system,” IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 3196-3206, May/June 2020.
[137] A. H. Fathima and K. Palanisamy, “Battery energy storage applications in wind integrated systems- a review,” in Proc. IEEE ISEG, pp. 1-8, Sep. 2014.
[138] S. M. A. S. Bukhari, J. Maqsood, M. Q. Baig, S. Ashraf, and T. A. Khan, “Comparison of characteristics – lead acid, nickel based, lead crystal and lithium based batteries,” in Proc. IEEE UKSim, pp. 444-450, Mar. 2015.
[139] N. Jabbour and C. Mademlis, “Supercapacitor-based energy recovery system with improved power control and energy management for elevator applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9389-9399, Dec. 2017.
[140] N. Jabbour and C. Mademlis, “Improved Control Strategy of a Supercapacitor-Based Energy Recovery System for Elevator Applications,” IEEE Trans. on Power Electron., vol. 31, no. 12, pp. 8398-8408, Dec. 2016.
[141] K. Bellache, M. B. Camara and B. Dakyo, “Transient power control for diesel-generator assistance in electric boat applications using supercapacitors and batteries,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 6, no. 1, pp. 416-428, Mar. 2018.
[142] D. Yıldırım, M. H. Akşit, C. Yolaçan, T. Pul, C. Ermiş, B. H. Aghdam, I. Çadırcı, and M. Ermiş, “Full-scale physical simulator of all SiC traction motor drive with onboard supercapacitor ESS for light-rail public transportation,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6290-6301, Aug. 2020.
[143] S. K. Kollimalla, M. K. Mishra, A. Ukil, and H. B. Gooi, “DC grid voltage regulation using new HESS control strategy,” IEEE Trans. Sustain. Energy, vol. 8, no. 2, pp. 772-781, Apr. 2017.
[144] M. Farhadi and O. Mohammed, “Adaptive energy management in redundant hybrid DC microgrid for pulse load mitigation,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 54-62, Jan. 2015.
G. DC-bus Voltage-level Selection
[145] S. Moussa, M. J. Ghorbal, I. Slama-Belkhodja, “DC voltage level choice in residential remote area,” in Proc. IREC, 2018, pp. 1-6.
[146] W. X. Li, X. M. Mou, Y. B. Zhou, and C. Marnay, “On voltage standards for DC home microgrids energized by distributed sources,” in Proc. IEEE PEMC, 2012, pp. 2282-2286.
[147] J. W. Chen, C. J. Wang and J. Chen, “Investigation on the selection of electric power system architecture for future more electric aircraft,” IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 563-576, June 2018.
[148] M. Terorde and D. Schulz, “New real-time heuristics for electrical load rebalancing in aircraft,” IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 3, pp. 1120-1131, Jun. 2016.
[149] H. Kakigano, Y. Miura and T. Ise, “Low-voltage bipolar type DC microgrid for super high quality distribution,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3066-3075, Dec. 2010.
[150] Sungoo Bae and Alexis Kwasinski, “Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1867-1876, Dec. 2012.
[151] A. Pratt, P. Kumar and T. V. Aldridge, “Evaluation of 400V DC distribution in telco and data centers to improve energy efficiency,” in Proc. INTELEC, pp. 32-39, 2007.
[152] S. Heier, Grid Integration of Wind Energy Conversion System, 2nd Ed., John Wiley & Sons Ltd., New York, 1998.
[153] Z. Chen, J. M. Guerrero and F. Blaabjerg, “A review of the state of the art of power electronics for wind turbines,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1859- 1875, 2009.
[154] F. Blaabjerg, M. Liserre and K. Ma, “Power electronics converters for wind turbine systems,” IEEE Trans. Ind. Appl., vol. 48, no. 2, pp. 708-719, 2012.
[155] K. Strunz, E. Abbasi and D. N. Huu, “DC microgrid for wind and solar power integration,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 2, no. 1, pp. 115-126, March 2014.
[156] Y. C. Chang, “Development of a switched-reluctance generator and its application to the establishment of microgrid system,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2010.
[157] “TMS320F28335 digital signal controllers (DSCs) data manual,” Available: https://www.ti.com/product/TMS320F28335.
[158] T. S. Lin, “A wind switched-reluctance generator based dc micro-grid with hybrid energy storage system and plug-in auxiliary energy support from utility grid,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2014.
[159] M. Z. Lu, “Switched-reluctance generator based dc microgrid with reconfigurable energy support mechanism,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC 2022.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *