帳號:guest(18.119.122.106)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王鈺權
作者(外文):Wang, Yu-Cyuan
論文名稱(中文):20 kVA三相四線高低頻複合換流器研製
論文名稱(外文):Design and Implementation of 20 kVA Three-Phase Four-Wire Hybrid-Frequency Inverters
指導教授(中文):吳財福
指導教授(外文):Wu, Tsai-Fu
口試委員(中文):林長華
余國瑞
廖益弘
口試委員(外文):Lin, Chang-Hua
Yu, Gwo-Ruey
Liao, Yi-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:110061502
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:128
中文關鍵詞:三相四線式換流器漣波電流消除高低頻複合式換流器併網型穩壓型能源需求分切合整直接數位控制
外文關鍵詞:three-phase four-wire inverterripple current eliminationhybrid frequency invertergrid-connection moderectification modeenergy demandD-Σ digital control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究設計並實現一額定容量為20 kVA三相四線高低頻複合換流器,搭配漣波補償功能,降低輸出電流之總諧波失真,使其符合IEEE規範(輸出電流總諧波失真小於5%)。電路架構大致可分成電力級和控制級兩部分,其中,電力級包含兩台並聯型三相四線半橋式換流器,低頻換流器額定功率為16 kVA、切換頻率為6 kHz;高頻換流器額定功率為4 kVA、切換頻率為48 kHz;控制級使用Renesas公司出品之RX71M晶片做控制核心,並搭配具快速響應的分切合整直接數位控制法,達到兼具高效能和穩定性之換流器系統。
分切合整直接數位控制透過輸入訊號和參考訊號做比較,產生一控制訊號來調節輸出,能夠迅速地因應電網或負載變化,以確保換流器能夠穩定運行。同時,此控制法還能省略傳統複雜的abc-dq座標軸轉換,簡化運算,還能將隨電流大小變化的電感值納入考量,降低輸出電流失真,同時達到降低開關元件成本和濾波器體積需求。
透過模擬與實測,來驗證換流器操作在兩個不同模式之可行性與穩定性。在併網模式下,能將儲能系統中直流電能轉為交流電能,可依照電網實虛功需求將交流電能饋入電網中;在整流模式下,則可將電網端電能轉換為直流電能,並依據負載變動來調變電流,同時穩定直流鏈電壓輸出,抑或將電能儲存起來,當出現電力供應不足時,便可供使用。對於未來儲能系統和充電樁領域,有莫大貢獻。
本研究主要貢獻為:(1) 實作一部20 kVA三相四線高低頻複合換流器;(2) 推導漣波補償公式,並驗證補償法理論之可行性;(3) 高低頻複合換流器實現實功和虛功調整。(4) 高低頻複合換流器能應用於併網模式和整流模式。
In this research, we design and implement a rated power of 20 kVA three-phase four-wire hybrid frequency inverter, incorporating ripple compensation to reduce total harmonic distortion of the output current, and making it comply with IEEE specifications (total harmonic distortion of the output current less than 5%). The circuit architecture can be divided into two parts: power stage and control stage. The power stage consists of two parallel-connected three-phase four-wire half-bridge inverters. The low-frequency inverter has a rated power of 16 kVA with a switching frequency of 6 kHz, while the high-frequency inverter has a rated power of 4 kVA with a switching frequency of 48 kHz. The control stage utilizes the RX71M chip as the control core produced by Renesas, and is combined with D-Σ control method to achieve an inverter system with high efficiency and stability.
The D-Σ control method compares the input with the reference to generate a control signal for adjusting the output. It will have rapid response to variations in the power grid or loads, to ensure the stability of the inverter. Moreover, this control method eliminates the traditional complex abc-dq coordinate transformation, simplifying calculations. It also takes into account the variation of inductance with current magnitude, reducing distortion in the output current and switching component cost and filter volume.
This research demonstrates the feasibility and stability of the inverter operation in two different modes through simulations and practical tests. In grid-connection mode, the inverter can inject dc power from the energy storage system to ac grid with the real and reactive power requirements of the grid. In rectification mode, the inverter can convert electrical energy from the grid into dc power, modulate the current with the load variations, stabilize the output of the dc link voltage, or store the energy for future use. In conclusion, it makes significant contributions to the field of energy storage systems and charging stations in the future.
The main contributions of this research are as follows: (1) implementation of a 20 kVA three-phase four-wire hybrid inverter, (2) derivation and validation of ripple compensation formulas and theory, (3) realization of active and reactive power adjustment in the hybrid frequency inverter, and (4) applications of the hybrid frequency inverter in grid-connection and rectification modes.
摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 x
圖目錄 xi
1 第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 單模組換流器架構 2
A. 三相四線半橋式換流器 2
B. 三相四線全橋式換流器 3
C. 三相三線半橋式換流器 4
D. 三相三線全橋式換流器 4
1.2.2 多模組換流器 5
A. 多階層模組化換流器 6
B. 相位交錯式並聯換流器 6
1.2.3 換流器濾波器架構 7
A. LC濾波器 7
B. LCL濾波器 8
C. LLCL濾波器 8
1.2.4 換流器控制法 9
A. 比例積分微分控制 10
B. 模糊控制 10
C. 重複控制 11
D. 無差拍控制 12
E. 分切合整直接數位控制 12
1.3 論文大綱 13
2 第二章 系統架構與控制法則 14
2.1 系統架構 14
2.2 分切合整直接數位控制 15
2.2.1 併網模式 15
A. 受控體 15
B. 低頻換流器控制 17
C. 高頻換流器控制 19
D. 高頻換流器漣波補償電流命令 20
2.2.2 整流模式 23
A. 直流鏈電容穩壓 24
B. 上下臂電容電壓不平衡補償 25
3 第三章 高低頻濾波器設計與系統穩定度分析 27
3.1 系統參數 27
3.1.1 LCL濾波器設計 27
3.2 系統穩定度分析 29
3.2.1 電流追蹤能力 29
3.2.2 絕對穩定度 32
3.2.3 相對穩定度 33
4 第四章 系統周邊電路 35
4.1 輔助電源 35
4.1.1 模塊封裝型電源轉換器 37
4.2 開關驅動電路 37
4.2.1 緩衝器SN74LVC244A 38
4.2.2 開關驅動電源 39
4.2.3 開關驅動IC 40
4.3 電流/電壓回授電路 41
4.3.1 直流鏈電壓 41
4.3.2 電容電壓 42
4.3.3 電感電流回授 44
4.3.4 直流電流回授 45
4.4 保護電路 46
4.4.1 過壓過流保護 46
4.4.2 輔助電源偵測 47
4.4.3 電壓箝位電路 47
4.4.4 電網斷開電路 48
4.4.5 緊急開關 49
5 第五章 韌體規劃與控制流程 50
5.1 RX71M微控制器 50
5.2 併網模式高低頻複合換流器程式流程規劃 52
5.2.1 低頻換流器 53
A. 主程式流程規劃 53
B. 中斷副程式流程規劃 54
5.2.2 高頻換流器 55
A. 主程式流程規劃 55
B. 中斷副程式流程規劃 56
5.2.3 高低頻複合換流器通訊流程規劃 58
5.3 整流模式高低頻複合換流器程式流程規劃 60
5.3.1 低頻換流器 61
A. 主程式流程規劃 61
B. 中斷副程式流程規劃 62
5.3.2 高頻換流器 63
A. 主程式流程規劃 63
B. 中斷副程式流程規劃 64
5.3.3 高低頻複合換流器通訊流程規劃 66
6 第六章 電路實務考量與效率評估 68
6.1 實務考量 68
6.1.1 類比/數位取樣延遲時間 68
6.1.2 電感值變化 70
6.1.3 數位預處理(Digital Preprocessing) 72
6.2 損耗分析 73
6.2.1 電感損耗 73
A. 銅損 74
B. 鐵損 75
6.2.2 開關元件損耗 77
A. 導通損失 78
B. 切換損失 79
6.2.3 系統總損耗 80
7 第七章 模擬與實測結果 81
7.1 系統規格 81
7.2 併網模式模擬與實測波形 82
7.2.1 Matlab/Simulink模擬結果 84
A. PF=1, 20 kVA無漣波補償 84
B. PF=1, 20 kVA含漣波補償 86
C. PF=0.8 Lagging, 20 kVA無漣波補償 88
D. PF=0.8 Lagging, 20 kVA含漣波補償 90
E. PF=0.8 Leading, 20 kVA無漣波補償 92
F. PF=0.8 Leading, 20 kVA含漣波補償 94
7.2.2 實測波形 96
A. PF=1, 20 kVA無漣波補償 96
B. PF=1, 20 kVA含漣波補償 97
C. PF=0.8 Lagging, 20 kVA無漣波補償 100
D. PF=0.8 Lagging, 20 kVA含漣波補償 101
E. PF=0.8 Leading, 20 kVA無漣波補償 104
F. PF=0.8 Leading, 20 kVA含漣波補償 105
7.3 整流模式模擬與實測波形 108
7.3.1 Matlab/Simulink模擬結果 110
7.3.2 實測波形 113
8 第八章 結論和未來研究方向 123
8.1 結論 123
8.2 未來研究方向 124
A. 高頻操作 124
B. 多模組並聯 124
C. 整流模式優化 124
參考文獻 125


[1] A. Mohd, E. Ortjohann, N. Hamsic, W. Sinsukthavorn, M. Lingemann, A. Schmelter, and D. Morton, “Control Strategy and Space Vector Modulation for Three-Leg Four-Wire Voltage Source Inverters Under Unbalanced Load Conditions”, IET Power Electron, Vol. 3, No. 3, pp. 323-333, May 2010.
[2] M. Rivera, V. Yaramasu, A. Llor, J. Rodriguez, B. Wu, and M. Fadel, “Digital Predictive Current Control of a Three-Phase Four-Leg Inverter”, IEEE Transactions on Industrial Electronics, Vol. 60, No. 11, pp. 4903-4932, Sep 2012.
[3] M. B. de Rossiter Correa, C. B. Jacobina, E. R. C. da Silva, and A. M. N. Lima, “A General PWM Strategy for Four-Switch Three-Phase Inverters”, IEEE Trans. on Power Electron., Vol. 21, No. 6, pp. 1618–1627, Nov. 2006.
[4] Y. Chen and K. Smedley, “Parallel Operation of One-Cycle Controlled Three-Phase PFC Rectifiers,” IEEE Trans. on Power Electron., Vol. 54, No.6, pp. 3217-3224, Nov 2007.
[5] J. Rodriguez, J.¬¬¬¬-S. Lai and F.-Z. Peng, “Multilevel Inverters: A Survey of Topologies, Controls, and Applications”, IEEE Transactions on Industrial Electronics, Vol.49, No.4, pp. 724-738 , Aug 2022.
[6] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, Bin Wu, J. Rodriguez, M. A. Perez, and J. I. Leon, “Recent Advances and Industrial Applications of Multilevel Converters”, IEEE Transactions on Industrial Electronics, Vol. 57, No. 8, pp. 2553–2580, Jun. 2010.
[7] L. Asiminoaei, E. Aeloiza, P. Enjeti, and F. Blaabjerg, “Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters”, IEEE Transactions on Industrial Electronics, Vol.55, No.3, pp. 1175-1189, Mar 2008.
[8] B. Cougo, T. A. Meynard and G. Gateau “Parallel Three-Phase Inverters: Optimal PWM Method for Flux Reduction in Intercell Transformers”, IEEE Transactions on Power Electronics, Vol.26, No.8, pp. 2184–2191, Jan 2011.
[9] P. Cortes, G. Ortiz, J. I. Yuz, J. Rodriguez, S. Vazquez, and L. G. Franquelo, “Model Predictive Control of an Inverter With Output LC Filter for UPS Applications”, IEEE Transactions on Industrial Electronics, Vol. 56, No. 6, pp. 1875-1883, Feb. 2009.
[10] J. He, J. Y. Choi and Y. Li, “Generalized Closed-Loop Control Schemes with Embedded Virtual Impedances for Voltage Source Converters with LC or LCL Filters”, IEEE Transactions on Power Electronics, Vol. 27, No. 4, pp. 1850–1861, Sep. 2011.
[11] Y. Tang, P. C. Loh, P. Wang, F. H. Choo, and F. Gao, “Exploring Inherent Damping Characteristic of LCL-Filters for Three-Phase Grid-Connected Voltage Source Inverters”, IEEE Transactions on Power Electronics, Vol. 27, No. 3, pp. 1433–1443, July 2011.
[12] W. Wu, Y. He and F. Blaabjerg, “An LLCL Power Filter for Single-Phase Grid-Tied Inverter’’, IEEE Transactions on Power Electronics, Vol. 27, No. 2, pp. 782–789, Feb 2012 .
[13] C. Rech, H. Pinheiro, H. A. Grundling, H. L. Hey, and J. R. Pinheiro, “Analysis and Design of a Repetitive Rredictive-PID Controller for PWM Inverters’’, 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), Jun. 2001 .
[14] Kiam Heong Ang, G. Chong, and Yun Li, “PID Control System Analysis, Design, and Technology’’, 2005 IEEE Transactions on Control Systems Technology, Vol. 13, No. 4, pp. 559-576, July 2005.
[15] G. R. Yu and J. S. Wei, “Fuzzy Control of a Bi-Directional Inverter with Nonlinear Inductance for DC Microgrids”, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), Jun. 2011.
[16] K. Zhang, Y. Kang, J. Xiong, and J. Chen, “Direct Repetitive Control of SPWM Inverter for UPS Purpose”, IEEE Transactions on Power Electronics, Vol. 18, No. 3, pp. 784-792, May 2003.
[17] P. Mattavelli, “An Improved Deadbeat Control for UPS Using Disturbance Observers”, IEEE Transactions on Industrial Electronics, Vol. 52, No. 1, pp. 206-212, Feb. 2005.
[18] T.-F. Wu, C.-H. Chang, L.-C. Lin, G.-R. Yu, and Y.-R. Chang, “A D-Σ Digital Control for Three-Phase Inverter to Achieve Active and Reactive Power Injection’’, IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, pp. 3879-3890, Aug. 2014.
[19] T.-F. Wu, L.-C. Lin, N. Yao, and Y.-K. Chen, “Extended Application of D-Σ Digital Control to a Single-Phase Bidirectional Inverter With an LCL Filter’’, IEEE Transactions on Power Electronics, Vol. 30, No. 7, pp. 3903-3911, July. 2015.
[20] 林世洋,分切合整直接數位控制高低頻互補換流器研究,國立清華大學電機工程研究所碩士論文,2017 年 7 月。
[21] 陳韋錡,分切合整直接數位控制高低頻互補換流器功率調配與漣波補償,國立清華大學電機工程研究所碩士論文,2018 年 7 月。
[22] 高秀慈,多功能高低頻互補轉換器,國立清華大學電機工程研究所碩士論文,2019 年 7 月。
[23] 黃彥翔,混頻並聯換流器系統,國立清華大學電機工程研究所博士論文,2021 年 7 月。
[24] T.-F. Wu, Y.-H. Huang, W.-C. Cheng, and X.-C. Gao, “Ripple-Compensation Improvement of Direct Digital Controlled 3Φ4W Grid-connected Hybrid-Frequency Inverter System’’, 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2019.
[25] A. Reznik, M. G. Simões, A. Al-Durra, and S. M. Muyeen, "LCL Filter Design and Performance Analysis for Grid-Interconnected Systems," IEEE Transactions on Industry Applications, vol. 50, no. 2, pp. 1225-1232, Mar.-Apr. 2014.
[26] J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3075–3078, Nov. 2011.
[27] J. Sun, “Impedance-based stability criterion for grid-connected inverters,” IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3075–3078, Nov. 2011.
[28] Mean Well, “RS-35 series,” December 2022
[29] Mean Well, “WDR-60 series,” September 2022
[30] Mean Well, “SCWN03 & DCWN03 series,” May 2022.
[31] Mean Well, “SCW05 series,” March 2018.
[32] Mean Well, “DCW05 series,” January 2018
[33] Mean Well, “SPBW03 & DPBW03 series,” June 2022
[34] Mean Well, “SPBW06 & DPBW06 series,” May 2022.
[35] Texas Instruments,“SN74LVC244A Octal Buffer or Driver With 3-State Outputs,”October 2020
[36] Infineon, “1EDI EiceDRIVER™ Compact - Separate Output Variant for MOSFET,” Rev. 2.0, July 2015.
[37] LEM, “Current Transducer LA 55-P,” September 2018.
[38] LEM, “Current Transducer LA 100-P,” August 2022.
[39] Renesas Electronics, RX71M Group User’s Manual, Dec. 2017
[40] Chang Sung Corporation, “Magnetic Powder Cores,” October 2015.
[41] T. -F. Wu, Y. -H. Huang and Y. -T. Liu, "3Φ4W Grid-Connected Hybrid-Frequency Parallel Inverter System With Ripple Compensation to Achieve Fast Response and Low Current Distortion," in IEEE Transactions on Industrial Electronics, vol. 68, no. 11, pp. 10890-10901
[42] PowerStream,Inc, Company, “ AWG Wire Sizes”
[43] CREE, “C3M0021120K datasheet,” July 2019.
[44] H.-J. Chen, ‘‘Power Losses of Silicon Carbide MOSFETin HVDC Application’’, University of Pittsburgh, 2012
[45] 曾國峰,10 kVA三相四線高低頻互補換流器,國立清華大學電機工程研究所碩士論文,2022 年 7 月。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *