帳號:guest(13.59.72.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林昱呈
作者(外文):Lin, Yu-Chen
論文名稱(中文):慢性傷口重點照護檢測試片及輔助定量APP開發
論文名稱(外文):Development of point-of-care chronic wound detection device combined with smartphone APP
指導教授(中文):鄭兆珉
指導教授(外文):Cheng, Chao-Min
口試委員(中文):魯才德
潘信誠
口試委員(外文):Lu, Tsai-Te
Pan, Shin-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:110038702
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:53
中文關鍵詞:慢性傷口嗜中性白血球彈性蛋白酶色彩分析濃度計算APP
外文關鍵詞:Chronic woundsHuman neutrophil elastase (HNE)Color analysisConcentration calculation APP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
慢性傷口一般被定義為超過4週而未能痊癒且處於發炎期的傷口,當患者本身身體狀態欠佳則有更大的可能會發生,不良的健康狀態容易造成癒合機制的延遲並成為微生物感染的溫床,基於現代社會慢性疾病(如糖尿病、高血壓等)、生活型態的改變(缺乏運動、久坐、高油飲食),慢性傷口儼然成為一不可忽視的重要議題,而慢性傷口的特殊性又會導致患者疏於發現及及時就醫,故發展重點照護(point-of-care)傷口檢測試片將能有效提升醫療照護品質,而在過去慢性傷口檢測上沒有一個好的策略,無法有效的監視傷口癒合進程,或者需要較長的時間及繁瑣的實驗室設備及技術人員,使得患者無法及時獲得妥善的治療,往往就醫時傷口已惡化至一定程度。
  故本研究著重於開發一款新式的慢性傷口檢測試片,具有便宜、快速、簡單使用等特點,我們選擇嗜中性白血球彈性蛋白酶(HNE)作為此試片的檢測生物標記,並基於傳統試片只能做到定性無法做到定量,因此試圖以試片的檢測變色率加以分析,開發試片用的色彩分析輔助系統,系統主體為以手機相機計算試片的RGB值,經過校正環境誤差後將RGB轉換成灰階值以統一量值,再將其灰階值轉換為相應的檢體HNE含量,以便於臨床診斷及居家照護上有更好的判斷依據。
Chronic wounds are generally defined as wounds that have not healed for more than 30 days and are in an inflammatory period. When the patient’s body condition is not good, it is more likely to occur. Poor health can easily cause delays in healing mechanisms and become a hotbed for microbial infections. Based on chronic diseases (such as diabetes, high blood pressure, etc.) and changes in lifestyles (lack of exercise, sedentary, high-fat diet) that are likely to cause chronic wounds in modern society, chronic wounds have become an important issue that cannot be ignored, and the particularity of chronic wounds will causing patients to neglect detection and timely medical treatment. Therefore, the development of point-of-care wound test strips will effectively improve the quality of medical care. In the past, there was no good strategy for chronic wound detection, which could not effectively monitor the progress of wound healing, or it would take a long time and require laboratory equipment and technical personnel to make it impossible for patients to obtain proper treatment in time, and often the wound has deteriorated to a certain extent when seeking medical treatment.
  This study focuses on the development of a new type of chronic wound detection test strip, which is cheap, fast, and easy to use. We chose human neutrophil elastase (HNE) as the detection biomarker of this test strip, and because the traditional test strip can only be qualitative but not quantitative, so we try to analyze the color change rate of the test strip to quantify it and develop a color analysis auxiliary system for the test strip. The main function of the system is to calculate the RGB value of the test strip with the mobile phone camera. After correcting the environmental deviation, convert the RGB value into a grayscale value to unify the value. Then, the grayscale value is converted into the corresponding content of HNE in the specimen to provide a better basis for judgment in clinical diagnosis and home care.
摘要 I
Abstract II
目錄 IV
圖目錄 VIII
表目錄 X
第一章、緒論 1
  1.1重點照護檢測 1
1.1.1重點照護檢測之材料 1
  1.2慢性傷口定義 2
   1.2.1壓瘡(Pressure ulcer) 3
   1.2.2糖尿病足(diabetic foot) 3
   1.2.3動脈潰瘍(arterial ulcer) 4
   1.2.4靜脈潰瘍(venous ulcer) 4
1.3生物膜(biofilm) 6
   1.3.1生物膜定義 6
   1.3.2生物膜結構 6
   1.3.3慢性傷口生物膜感染及負面影響 8
  1.4嗜中性白血球彈性蛋白酶 9
  1.5酵素結合免疫吸附分析法 10
1.6色彩校正 12
1.6.1 RGB色彩模型 12
1.6.2 CMYK色彩模型 13
1.6.3 HSI色彩模型 13
  1.7研究動機 15
第二章、實驗材料及方法 17
  2.1實驗材料 17
  2.2.1蛋白萃取檢體處理程序(舊) 19
2.2.2棉棒採集檢體處理程序(新) 19
  2.3 PMN (Neutrophil) Elastase Human ELISA Kit 20
  2.4試片製作 22
第三章、試片開發與檢測過程 24
  3.1慢性傷口生物膜檢測試片 24
   3.1.1 生物膜染色程序 24
   3.1.2 染色結果及預後分析 25
  3.2急性和慢性傷口HNE值含量及關係確立 27
   3.2.1舊檢體採集方式ELISA 27
   3.2.2新檢體採集方式ELISA 28
3.3試片之製造及功能性優化 29
3.3.1最佳濃度建立 29
3.3.2試片製作 32
第四章、手機輔助APP開發 35
  4.1 搭配細菌檢測試片之APP開發 35
   4.1.1 MTT-PMS細菌檢測試片 36
   4.1.2 RGB變色率及細菌檢測試片濃度分析 37
   4.1.3色彩分析及濃度換算APP 39
4.1.4 成果 42
4.2 搭配HNE試片之APP建構及使用 43
第五章、結論與未來展望 48
第六章、參考文獻 50
1. Gubala, V., et al., Point of Care Diagnostics: Status and Future. Analytical Chemistry, 2012. 84(2): p. 487-515.
2. Price, C.P., Point of care testing. BMJ, 2001. 322(7297): p. 1285-1288.
3. Hu, J., et al., Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 2014. 54: p. 585-597.
4. Ryan, F., S. O'Shea, and S. Byrne, The ‘carry-over’ effects of patient self-testing: Positive effects on usual care management by an anticoagulation management service. Thrombosis Research, 2010. 126(5): p. e345-e348.
5. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373.
6. Lu, Y., et al., Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay. Electrophoresis, 2009. 30(9): p. 1497-1500.
7. Nilghaz, A., et al., Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab on a Chip, 2012. 12(1): p. 209-218.
8. Velnar, T., T. Bailey, and V. Smrkolj, The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 2009. 37(5): p. 1528-42.
9. Lazarus, G.S., et al., Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol, 1994. 130(4): p. 489-93.
10. Zhao, G., et al., Biofilms and Inflammation in Chronic Wounds. Advances in wound care, 2013. 2(7): p. 389-399.
11. Edsberg, L.E., et al., Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. J Wound Ostomy Continence Nurs, 2016. 43(6): p. 585-597.
12. Wagner, F.W., Jr., The diabetic foot. Orthopedics, 1987. 10(1): p. 163-72.
13. Hirsch, A.T., et al., ACC/AHA 2005 Practice Guidelines for the Management of Patients With Peripheral Arterial Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic). Circulation, 2006. 113(11): p. e463-e654.
14. Eklöf, B., et al., Revision of the CEAP classification for chronic venous disorders: consensus statement. J Vasc Surg, 2004. 40(6): p. 1248-52.
15. Ahmad, N., In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics, 2023. 15(1): p. 42.
16. van Loosdrecht, M.C.M., et al., Biofilm structures. Water Science and Technology, 1995. 32(8): p. 35-43.
17. Sutherland, I.W., The biofilm matrix – an immobilized but dynamic microbial environment. Trends in Microbiology, 2001. 9(5): p. 222-227.
18. Mendoza, R.A., J. Hsieh, and R.D. Galiano, The impact of biofilm formation on wound healing. Wound healing-current perspectives, 2019. 10.
19. James, G.A., et al., Biofilms in chronic wounds. Wound Repair Regen, 2008. 16(1): p. 37-44.
20. Malone, M., et al., The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care, 2017. 26(1): p. 20-25.
21. Høiby, N., et al., The clinical impact of bacterial biofilms. International Journal of Oral Science, 2011. 3(2): p. 55-65.
22. Bishop, A., Role of oxygen in wound healing. J Wound Care, 2008. 17(9): p. 399-402.
23. Boyko, E.J., et al., A prospective study of risk factors for diabetic foot ulcer. The Seattle Diabetic Foot Study. Diabetes Care, 1999. 22(7): p. 1036-42.
24. Wu, Y.K., N.C. Cheng, and C.M. Cheng, Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends Biotechnol, 2019. 37(5): p. 505-517.
25. Flemming, H.-C. and J. Wingender, The biofilm matrix. Nature Reviews Microbiology, 2010. 8(9): p. 623-633.
26. Wolcott, R.D. and G.D. Ehrlich, Biofilms and Chronic Infections. JAMA, 2008. 299(22): p. 2682-2684.
27. Brinkmann, V., et al., Neutrophil Extracellular Traps Kill Bacteria. Science, 2004. 303(5663): p. 1532-1535.
28. Vasconcelos, A., et al., Protein Matrices for Improved Wound Healing: Elastase Inhibition by a Synthetic Peptide Model. Biomacromolecules, 2010. 11(9): p. 2213-2220.
29. Ferreira, A.V., et al., Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation. Applied Microbiology and Biotechnology, 2017. 101(4): p. 1443-1454.
30. Hasmann, A., et al., Sensor materials for the detection of human neutrophil elastase and cathepsin G activity in wound fluid. Experimental Dermatology, 2011. 20(6): p. 508-513.
31. Barros, S.C., et al., NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. Reactive and Functional Polymers, 2013. 73(10): p. 1357-1365.
32. Clark, M.F., R.M. Lister, and M. Bar-Joseph, ELISA techniques, in Methods in Enzymology. 1986, Academic Press. p. 742-766.
33. Essam, N., ELISA Principle, Procedure, Types, and Applications https://blog.praxilabs.com/2021/09/20/elisa-principle/. 2022.
34. SKIN AND WOUND CARE FOR HEALTH CARE PROFESSIONALS https://hyp.is/go?url=https%3A%2F%2Fecampusontario.pressbooks.pub%2Fskinandwoundcare%2Fchapter%2Fintroduction%2F&group=__world__.
35. Serena, T.E., Development of a novel technique to collect proteases from chronic wounds. Advances in wound care, 2014. 3(12): p. 729-732.
36. Carrilho, E., A.W. Martinez, and G.M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Analytical Chemistry, 2009. 81(16): p. 7091-7095.
37. Dungchai, W., O. Chailapakul, and C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 2011. 136(1): p. 77-82.
38. Yang, T., S.-C. Pan, and C.-M. Cheng, Paper-based human neutrophil elastase detection device for clinical wound monitoring. Lab on a Chip, 2020. 20(15): p. 2709-2716.
39. Yang, T., S.-C. Pan, and C.-M. Cheng, Paper-based detection device for chronic wound monitoring. Health Technology, 2020. 4.
40. Nakagami, G., et al., Biofilm detection by wound blotting can predict slough development in pressure ulcers: a prospective observational study. Wound Repair and Regeneration, 2017. 25(1): p. 131-138.
41. Mori, Y., et al., Effectiveness of biofilm‐based wound care system on wound healing in chronic wounds. Wound Repair and Regeneration, 2019. 27(5): p. 540-547.
42. Nakagami, G., et al., Rapid detection of biofilm by wound blotting following sharp debridement of chronic pressure ulcers predicts wound healing: A preliminary study. International Wound Journal, 2020. 17(1): p. 191-196.
43. Wu, Y.-F., et al., Point-of-Care Wound Blotting with Alcian Blue Grading versus Fluorescence Imaging for Biofilm Detection and Predicting 90-Day Healing Outcomes. Biomedicines, 2022. 10(5): p. 1200.
44. Rudd, K., et al., Analysis for the global burden of disease study. Lancet (London, England), 1990. 395: p. 200-211.
45. Mitsakakis, K., et al., Diagnostic tools for tackling febrile illness and enhancing patient management. Microelectronic engineering, 2018. 201: p. 26-59.
46. Lagier, J.-C., et al., Current and past strategies for bacterial culture in clinical microbiology. Clinical microbiology reviews, 2015. 28(1): p. 208-236.
47. Reali, S., et al., Novel diagnostics for point-of-care bacterial detection and identification. RSC advances, 2019. 9(37): p. 21486-21497.
48. Puttaswamy, S., B.D. Lee, and S. Sengupta, Novel electrical method for early detection of viable bacteria in blood cultures. Journal of clinical microbiology, 2011. 49(6): p. 2286-2289.
49. Vila, J., et al., Métodos de diagnóstico rápido en microbiología clínica: necesidades clínicas. Enfermedades Infecciosas Y Microbiología Clínica, 2017. 35(1): p. 41-46.
50. Liao, Y.-H., et al., Portable device for quick detection of viable bacteria in water. Micromachines, 2020. 11(12): p. 1079.
51. Carbonnelle, E. and L. Raskine, MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Bio tribune magazine, 2011. 39: p. 35-42.
52. Itoh, S., et al., New rapid enzyme-linked immunosorbent assay to detect antibodies against bacterial surface antigens using filtration plates. Biological and Pharmaceutical Bulletin, 2002. 25(8): p. 986-990.
53. Järvinen, A.-K., et al., Rapid identification of bacterial pathogens using a PCR-and microarray-based assay. BMC microbiology, 2009. 9(1): p. 1-16.
54. Lazcka, O., F.J. Del Campo, and F.X. Munoz, Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and bioelectronics, 2007. 22(7): p. 1205-1217.
55. Shih, C.-M., et al., based ELISA to rapidly detect Escherichia coli. Talanta, 2015. 145: p. 2-5.
56. Rompre, A., et al., Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of microbiological methods, 2002. 49(1): p. 31-54.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *