|
1. Gubala, V., et al., Point of Care Diagnostics: Status and Future. Analytical Chemistry, 2012. 84(2): p. 487-515. 2. Price, C.P., Point of care testing. BMJ, 2001. 322(7297): p. 1285-1288. 3. Hu, J., et al., Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 2014. 54: p. 585-597. 4. Ryan, F., S. O'Shea, and S. Byrne, The ‘carry-over’ effects of patient self-testing: Positive effects on usual care management by an anticoagulation management service. Thrombosis Research, 2010. 126(5): p. e345-e348. 5. Whitesides, G.M., The origins and the future of microfluidics. Nature, 2006. 442(7101): p. 368-373. 6. Lu, Y., et al., Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay. Electrophoresis, 2009. 30(9): p. 1497-1500. 7. Nilghaz, A., et al., Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab on a Chip, 2012. 12(1): p. 209-218. 8. Velnar, T., T. Bailey, and V. Smrkolj, The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res, 2009. 37(5): p. 1528-42. 9. Lazarus, G.S., et al., Definitions and guidelines for assessment of wounds and evaluation of healing. Arch Dermatol, 1994. 130(4): p. 489-93. 10. Zhao, G., et al., Biofilms and Inflammation in Chronic Wounds. Advances in wound care, 2013. 2(7): p. 389-399. 11. Edsberg, L.E., et al., Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. J Wound Ostomy Continence Nurs, 2016. 43(6): p. 585-597. 12. Wagner, F.W., Jr., The diabetic foot. Orthopedics, 1987. 10(1): p. 163-72. 13. Hirsch, A.T., et al., ACC/AHA 2005 Practice Guidelines for the Management of Patients With Peripheral Arterial Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic). Circulation, 2006. 113(11): p. e463-e654. 14. Eklöf, B., et al., Revision of the CEAP classification for chronic venous disorders: consensus statement. J Vasc Surg, 2004. 40(6): p. 1248-52. 15. Ahmad, N., In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics, 2023. 15(1): p. 42. 16. van Loosdrecht, M.C.M., et al., Biofilm structures. Water Science and Technology, 1995. 32(8): p. 35-43. 17. Sutherland, I.W., The biofilm matrix – an immobilized but dynamic microbial environment. Trends in Microbiology, 2001. 9(5): p. 222-227. 18. Mendoza, R.A., J. Hsieh, and R.D. Galiano, The impact of biofilm formation on wound healing. Wound healing-current perspectives, 2019. 10. 19. James, G.A., et al., Biofilms in chronic wounds. Wound Repair Regen, 2008. 16(1): p. 37-44. 20. Malone, M., et al., The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care, 2017. 26(1): p. 20-25. 21. Høiby, N., et al., The clinical impact of bacterial biofilms. International Journal of Oral Science, 2011. 3(2): p. 55-65. 22. Bishop, A., Role of oxygen in wound healing. J Wound Care, 2008. 17(9): p. 399-402. 23. Boyko, E.J., et al., A prospective study of risk factors for diabetic foot ulcer. The Seattle Diabetic Foot Study. Diabetes Care, 1999. 22(7): p. 1036-42. 24. Wu, Y.K., N.C. Cheng, and C.M. Cheng, Biofilms in Chronic Wounds: Pathogenesis and Diagnosis. Trends Biotechnol, 2019. 37(5): p. 505-517. 25. Flemming, H.-C. and J. Wingender, The biofilm matrix. Nature Reviews Microbiology, 2010. 8(9): p. 623-633. 26. Wolcott, R.D. and G.D. Ehrlich, Biofilms and Chronic Infections. JAMA, 2008. 299(22): p. 2682-2684. 27. Brinkmann, V., et al., Neutrophil Extracellular Traps Kill Bacteria. Science, 2004. 303(5663): p. 1532-1535. 28. Vasconcelos, A., et al., Protein Matrices for Improved Wound Healing: Elastase Inhibition by a Synthetic Peptide Model. Biomacromolecules, 2010. 11(9): p. 2213-2220. 29. Ferreira, A.V., et al., Detection of human neutrophil elastase (HNE) on wound dressings as marker of inflammation. Applied Microbiology and Biotechnology, 2017. 101(4): p. 1443-1454. 30. Hasmann, A., et al., Sensor materials for the detection of human neutrophil elastase and cathepsin G activity in wound fluid. Experimental Dermatology, 2011. 20(6): p. 508-513. 31. Barros, S.C., et al., NMR and molecular modelling studies on elastase inhibitor-peptides for wound management. Reactive and Functional Polymers, 2013. 73(10): p. 1357-1365. 32. Clark, M.F., R.M. Lister, and M. Bar-Joseph, ELISA techniques, in Methods in Enzymology. 1986, Academic Press. p. 742-766. 33. Essam, N., ELISA Principle, Procedure, Types, and Applications https://blog.praxilabs.com/2021/09/20/elisa-principle/. 2022. 34. SKIN AND WOUND CARE FOR HEALTH CARE PROFESSIONALS https://hyp.is/go?url=https%3A%2F%2Fecampusontario.pressbooks.pub%2Fskinandwoundcare%2Fchapter%2Fintroduction%2F&group=__world__. 35. Serena, T.E., Development of a novel technique to collect proteases from chronic wounds. Advances in wound care, 2014. 3(12): p. 729-732. 36. Carrilho, E., A.W. Martinez, and G.M. Whitesides, Understanding Wax Printing: A Simple Micropatterning Process for Paper-Based Microfluidics. Analytical Chemistry, 2009. 81(16): p. 7091-7095. 37. Dungchai, W., O. Chailapakul, and C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 2011. 136(1): p. 77-82. 38. Yang, T., S.-C. Pan, and C.-M. Cheng, Paper-based human neutrophil elastase detection device for clinical wound monitoring. Lab on a Chip, 2020. 20(15): p. 2709-2716. 39. Yang, T., S.-C. Pan, and C.-M. Cheng, Paper-based detection device for chronic wound monitoring. Health Technology, 2020. 4. 40. Nakagami, G., et al., Biofilm detection by wound blotting can predict slough development in pressure ulcers: a prospective observational study. Wound Repair and Regeneration, 2017. 25(1): p. 131-138. 41. Mori, Y., et al., Effectiveness of biofilm‐based wound care system on wound healing in chronic wounds. Wound Repair and Regeneration, 2019. 27(5): p. 540-547. 42. Nakagami, G., et al., Rapid detection of biofilm by wound blotting following sharp debridement of chronic pressure ulcers predicts wound healing: A preliminary study. International Wound Journal, 2020. 17(1): p. 191-196. 43. Wu, Y.-F., et al., Point-of-Care Wound Blotting with Alcian Blue Grading versus Fluorescence Imaging for Biofilm Detection and Predicting 90-Day Healing Outcomes. Biomedicines, 2022. 10(5): p. 1200. 44. Rudd, K., et al., Analysis for the global burden of disease study. Lancet (London, England), 1990. 395: p. 200-211. 45. Mitsakakis, K., et al., Diagnostic tools for tackling febrile illness and enhancing patient management. Microelectronic engineering, 2018. 201: p. 26-59. 46. Lagier, J.-C., et al., Current and past strategies for bacterial culture in clinical microbiology. Clinical microbiology reviews, 2015. 28(1): p. 208-236. 47. Reali, S., et al., Novel diagnostics for point-of-care bacterial detection and identification. RSC advances, 2019. 9(37): p. 21486-21497. 48. Puttaswamy, S., B.D. Lee, and S. Sengupta, Novel electrical method for early detection of viable bacteria in blood cultures. Journal of clinical microbiology, 2011. 49(6): p. 2286-2289. 49. Vila, J., et al., Métodos de diagnóstico rápido en microbiología clínica: necesidades clínicas. Enfermedades Infecciosas Y Microbiología Clínica, 2017. 35(1): p. 41-46. 50. Liao, Y.-H., et al., Portable device for quick detection of viable bacteria in water. Micromachines, 2020. 11(12): p. 1079. 51. Carbonnelle, E. and L. Raskine, MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Bio tribune magazine, 2011. 39: p. 35-42. 52. Itoh, S., et al., New rapid enzyme-linked immunosorbent assay to detect antibodies against bacterial surface antigens using filtration plates. Biological and Pharmaceutical Bulletin, 2002. 25(8): p. 986-990. 53. Järvinen, A.-K., et al., Rapid identification of bacterial pathogens using a PCR-and microarray-based assay. BMC microbiology, 2009. 9(1): p. 1-16. 54. Lazcka, O., F.J. Del Campo, and F.X. Munoz, Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and bioelectronics, 2007. 22(7): p. 1205-1217. 55. Shih, C.-M., et al., based ELISA to rapidly detect Escherichia coli. Talanta, 2015. 145: p. 2-5. 56. Rompre, A., et al., Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of microbiological methods, 2002. 49(1): p. 31-54.
|