帳號:guest(3.145.82.39)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):游凱晴
作者(外文):Yu, Kai-Ching
論文名稱(中文):透過生物相容性雙亞硝基鐵錯合物開發一氧化氮的細胞穿透性遞送於眼角膜移植的生理應用
論文名稱(外文):Development of Cell-penetrating Delivery of Nitric Oxide By Biocompatible Dinitrosyl Iron Complex and Its Biomedical Applications in Corneal Transplantation
指導教授(中文):魯才德
指導教授(外文):Lu, Tsai-Te
口試委員(中文):陳宏吉
薛詒仁
黃玠誠
口試委員(外文):Chen, Hung-Chi
Hsueh, Yi-Jen
Huang, Chieh-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:110038514
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:71
中文關鍵詞:一氧化氮雙亞硝基鐵錯合物眼角膜移植生物相容性細胞遞送
外文關鍵詞:NODNICsCorneaCornea TransplantationBiocompatibleCell-penetrating
相關次數:
  • 推薦推薦:0
  • 點閱點閱:66
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於人類角膜內皮細胞在體內無法再生,當角膜內皮細胞密度嚴重下降時,喪失排水功能,將導致角膜的水腫及混濁,進而對視力造成威脅,嚴重者甚至喪失視力。在目前臨床上,解決角膜內皮組織病變的方法仍以角膜移植為主,然而在捐贈角膜短缺的情況及移植後所引起的相關併發症下仍有許多患者無法被治癒。儘管有些患者能進行移植手術,但由於角膜本身品質不佳或移植後接縫處發生炎症、免疫排斥反應等原因,可能導致供體角膜內皮細胞密度大幅下降,導致移植失敗。因此,若能開發出一藥物術前對欲移植的角膜內皮細胞起到保護作用以預防移植後的發炎環境或術後能大力減少併發症發生的機會,進而有效解決角膜捐贈問題或降低手術失敗風險。本論文擬利用一氧化氮載體DNIC作為治療潛力藥物,期望能藉由一氧化氮在調節生理機制上的重要作用,如血管擴張、神經訊息傳導、調節細胞因子等,對移植細胞產生保護作用並降低移植後的發炎環境,以改善細胞存活率,並進一步提升移植成功率。
實驗中,我們合成Dinitrosyl Iron Complex (DNIC)作為一氧化氮載體,可以延長一氧化氮在生物體內的半衰期與增加傳遞距離。透過延長一氧化氮在細胞內的時間以提升一氧化氮在體內的生物可利用率。實驗結果展現DNIC在HSFM有/無添加2% FBS及50 mg/mL BSA的穩定性,以此為基礎DNIC的細胞攝取和其在細胞內的釋放動力學則透過EPR光譜與NO specific probe (DAF-FM)進一步評估,結果顯示DNIC在細胞內釋放一氧化氮的機制能提供更穩定且有效率的一氧化氮遞送能力。在細胞存活率實驗中,DNIC能夠對角膜內皮細胞B4G12起到增生作用,並且在模擬氧化壓力的體外實驗裡,DNIC預處理可有效提昇角膜內皮細胞的存活比例。綜述以上實驗結果,我們認為DNIC有潛力用於角膜移植前對供體角膜產生細胞保護作用,進而提昇細胞在惡劣環境中的生存能力,於術後DNIC具有抗發炎、抗氧化的能力下,同時促進移植後傷口的癒合且降低併發症發生機率。
Since human corneal endothelial cells cannot regenerate in the body, when the density of CECs is severely reduced, the loss of drainage function will lead to corneal edema and cloudiness, which will threaten vision and even loss of vision in severe cases. Currently, the main clinical solution for corneal endothelial lesions is corneal transplantation, however, many patients are not cured due to the shortage of donor corneas and the associated complications after transplantation. Although some patients are able to undergo transplantation, the donor corneal endothelial cell density may be significantly reduced due to poor quality of the cornea or post-transplantation inflammation or immune rejection, resulting in graft failure. Therefore, if a drug can be developed to protect the endothelial cells of the donor cornea before surgery to prevent the inflammatory environment after transplantation or after surgery, the chance of complications can be greatly reduced, which can effectively solve the problem of corneal donation or reduce the risk of surgical failure. Herein, to overcome these challenges, we developed the nitric oxide carrier DNIC as a potential therapeutic agent, hoping to improve cell survival and further enhance graft success through the important role of nitric oxide in regulating physiological mechanisms such as vasodilatation, neurotransmission, and modulation of cytokines to protect graft cells and reduce the post-transplant inflammatory environment.
We synthesized Dinitrosyl Iron Complex (DNIC) as a nitric oxide carrier, which can prolong the half-life of nitric oxide in living organisms and increase the transmission distance. By prolonging the time of nitric oxide in the cell, the bioavailability of nitric oxide can be enhanced. The experimental results demonstrated the stability of DNIC in HSFM with/without the addition of 2% FBS and 50 mg/mL BSA, based on which the cellular uptake and intracellular release kinetics of DNIC were evaluated by EPR spectroscopy and NO specific probe (DAF-FM), which showed that the intracellular release mechanism of DNIC provided more stable and efficient nitric oxide delivery. DNIC exhibits a remarkable pro-proliferative effect on CECs and significant antioxidative capacity, as indicated by our in vitro results. Our findings showed that DNIC has the potential to be used for cell protection of donor corneas prior to corneal transplantation, to enhance cell survival in adverse environments, and to promote post-transplant wound healing and reduce the incidence of complications with its anti-inflammatory and antioxidant properties.

目錄
目錄 2
圖目錄 4
表目錄 5
摘要 6
Abstract 7
致謝 8
ㄧ、緒論 9
1-1角膜 9
1-1-1角膜上皮(corneal epithelium) 9
1-1-2前彈力層(Bowman’s Layer) 10
1-1-3角膜基質層 10
1-1-4後彈力層(Descemet’s membrane) 13
1-1-5角膜內皮 13
1-2角膜疾病 15
1-3角膜移植術(keratoplasty) 15
1-3-1全層角膜成形術 (Penetrating keratoplasty, PKP) 16
1-3-2前角膜深層移植術(Deep Anterior lamellar keratoplasty, DALK) 16
1-3-3深板層角膜移植手術(Deep lamellar endothelial keratoplasty, DLEK) 17
1-3-4前角膜深層移植術(Descemet Stripping Automated Endothelial Keratoplasty, DSAEK) 18
1-3-5後彈力層角膜內皮細胞移植術(Descemet Membrane Endothelial Keratoplasty, DMEK) 18
1-4角膜移植排斥 19
1-4-1角膜移植排斥反應的治療 20
2-1ㄧ氧化氮 22
2-1-1ㄧ氧化氮的發展 22
2-1-2ㄧ氧化氮藥物的發展 25
2-1-3一氧化氮供體 27
2-1-3-1有機硝酸鹽(Organic nitrates) 27
2-1-3-2亞硝基硫醇(S-nitrosothiols, RSNOs) 28
2-1-3-3二醇二氮烯(Diazeniumdiolates, NONOate) 29
2-2雙亞硝基鐵錯合物 (DNIC) 30
2-2-1雙亞硝基鐵錯合物的發展 30
二、實驗 33
2-1藥品 33
2-2儀器 35
2-3反應之環境條件 36
2-4緩衝溶液與其他溶液之配製 36
2-4-1 磷酸鹽緩衝生理鹽水(Phosphate-buffer saline, PBS)之配製 36
2-4-2 格里斯試劑Griess reagent solution之配製 36
2-4-3合成[Na-18-crown-6-ether][Fe(CO)3(NO)] 36
2-5小分子化合物合成及製備 37
2-5-1合成[Fe(u-S-thioglycerol)(NO)2]2 (DNIC-COOH) 37
2-6細胞培養 38
2-6-1細胞來源與細胞的生長環境 38
2-6-2細胞解凍活化 38
2-6-3細胞繼代 39
2-6-4細胞存活率試驗(Cell viability test) 39
2-6-5 DNIC進入細胞內的動力學實驗 40
2-6-6 DNIC在細胞內的一氧化氮釋放定量實驗(使用B4G12細胞) 40
2-6-7 DNIC進入細胞內的機制探討實驗 41
2-6-8 免疫螢光染色 42
2-6-9即時定量聚合酶連鎖反應(Quantitative real-time PCR) 42
三、結果與討論 44
3-1 DNIC的合成與鑑定 44
3-2探討DNIC體外之一氧化氮釋放動力學與反應性 45
3-3 DNIC之細胞存活率測試 47
3-4 DNIC進入細胞之動力學探討 49
3-5 DNIC進入細胞之機制探討 52
3-6 使用DNICs可調節HCEC內第一型血紅素氧化酶的表達 55
3-7 DNICs促進HCEC抗氧化能力分析 56
3-7 DNICs維持HCEC之生理功能 58
四、結論 59
4-1結論 59
五、參考文獻 61

圖目錄
Figure 1角膜及眼睛構造 10
Figure 2角膜上皮層構造 11
Figure 3角膜基質內細胞分佈 12
Figure 4角膜基質層結構[11] 13
Figure 5角膜後彈力層層結構[16] 14
Figure 6角膜內皮細胞密度於不同狀況下 15
Figure 7全層角膜成形術 (Penetrating keratoplasty, PKP) 17
Figure 8前角膜深層移植術(Deep Anterior lamellar keratoplasty) 17
Figure 9深板層角膜移植手術(Deep lamellar endothelial keratoplasty) 18
Figure 10前角膜深層移植術(DSAEK) 19
Figure 11後彈力層角膜內皮細胞移植術(DMEK) 20
Figure 12角膜移植排斥 21
Figure 13市面上一氧化氮藥物 27
Figure 14有機硝酸鹽類在體內釋放一氧化氮機制[82] 29
Figure 15常見亞硝基硫醇類藥物 30
Figure 16內源性DNIC的生成[100] 32
Figure 17 DNIC與蛋白質間的交互作用[95] 33
Figure 18 DNIC-COOH之化學結構。 45
Figure 19 DNIC之(a) FT-IR光譜(b) UV-Vis光譜。 46
Figure 20 DNIC在細胞培養液MEM (a)有(b)無添加2% FBS的條件下,隨時間變化的NO累積濃度圖。每個數據點皆為三重複(mean ± SD)。 47
Figure 21 (a) 在細胞培養液HSFM有添加2% FBS的條件下,DNIC的代表性EPR光譜。(b) 在細胞培養液HSFM有(黑)或無(藍)添加2% FBS的條件下,DNIC的代表性EPR光譜。(c) 給予不同時間間隔(0, 0.5, 1, 2, 3, 4, 8 and 24 h)的DNIC-COOH (50 μM)後,在細胞培養液HSFM中protein-bound DNIC生成與瓦解。 48
Figure 22 (a) B4G12細胞給予24 h (b) 48 h不同濃度的DNIC-COOH後的細胞存活率測試。(c) B4G12細胞給予24 h 10-100 μM DNIC-COOH後的細胞存活率測試。(d) B4G12細胞給予24 h (e) 48 h不同濃度的DNIC-COOMe後的細胞存活率測試。 49
Figure 23用(a) (b) DNIC-COOH (75 μM)、(c) (d) DNIC-COOMe (1 μM)處理B4G12細胞的EPR光譜的時間變化 51
Figure 24 (a) DNIC-COOH、(b) DNIC-COOMe在37℃ 處理B4G12細胞時,細胞內protein-bound DNIC生成與瓦解。結果的半衰期皆進一步透過擬一階動力學擬合。每個數據點皆為三重複(mean ± SD)。 51
Figure 25給予0.5 h的DAF-FM (5 μM)、給予6 h的DNIC-COOH (75 μM)及給予0.5 h的DNIC-COOMe (1 μM)所得到的B4G12螢光圖像。 53
Figure 26給予B4G12細胞DAF-FM (5 μM)和DNIC-COOH (75 μM)(藍)、DNIC-COOMe (1 μM) (紅),分別在不同時間點(0, 1, 2, 4, 6 and 8 h)時細胞的螢光相對強度,兩組結果的半衰期皆進一步透過擬一階動力學擬合。每個數據點皆為三重複(mean ± SD)。 53
Figure 27 用不同類型的抑制劑(a) N-Ethylmaleimide (NEM), (b) Chlorpromazine Hydrochloride (CH), (c) Methyl-beta-cyclodextrin (mβCD), (d) Genistein 的濃度培養三十分鐘B4G12之細胞存活度。*p < 0.05; ***p < 0.005; ****p < 0.0001。 55
Figure 28 B4G12細胞攝入DNICs的吸收機制。用(a) 75 µM DNIC-COOH和(b) 1 µM DNIC-COOMe處理的B4G12細胞的標準化EPR強度顯示NEM的抑製作用,評估白蛋白介導的和硫醇介導的吸收機制的參與。(c) 胞吞作用抑製劑預處理30分鐘後加入75 µM DNIC-COOH共培養6小時,B4G12細胞的標準化EPR強度。每個數據點皆為三重複(mean ± SD),並以one way ANOVA進行跨組分析,*p < 0.05。 57
Figure 29 B4G12細胞給予DNIC-COOH(75 μM)、DNIC-COOMe(1 μM)後提升HO-1之表現。qPCR的結果顯示了DNICs刺激後HMOX1基因表達隨時間變化之結果。 *p < 0.05; ***p < 0.005。 58
Figure 30 B4G12細胞給予預處理24 h不同濃度的DNIC-COOH(75 μM)、DNIC-COOMe(1 μM)後的氧化性壓力細胞存活率測試。每個數據點皆為六重複(mean ± SD),並以one way ANOVA進行跨組分析,若P<0.05則為顯著差異。 59
Figure 31 以免疫螢光染色法觀察B4G12與Zonaoccludens-1 (ZO-1)蛋白表現。 60
Figure 32 整體實驗示意圖。 62
表目錄
Table 1統整治療角膜移植排斥方法及使用DNIC在不同預防時間預期發揮的療效 23
Table 2統整DNICs於細胞培養液的半衰期 61

1. Chen, K., et al., The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates. Cell Death & Disease, 2022. 13(5): p. 513.
2. Sridhar, M.S., Anatomy of cornea and ocular surface. Indian J Ophthalmol, 2018. 66(2): p. 190-194.
3. Davidson, H.J. and V.J. Kuonen, The tear film and ocular mucins. Veterinary Ophthalmology, 2004. 7(2): p. 71-77.
4. McKenzie, R.W., J.E. Jumblatt, and M.M. Jumblatt, Quantification of MUC2 and MUC5AC transcripts in human conjunctiva. Invest Ophthalmol Vis Sci, 2000. 41(3): p. 703-8.
5. Wilson, S.E. and J.-W. Hong, Bowman's Layer Structure and Function: Critical or Dispensable to Corneal Function? A Hypothesis. Cornea, 2000. 19(4): p. 417-420.
6. Lagali, N., J. Germundsson, and P. Fagerholm, The Role of Bowman’s Layer in Corneal Regeneration after Phototherapeutic Keratectomy: A Prospective Study Using In Vivo Confocal Microscopy. Investigative Ophthalmology & Visual Science, 2009. 50(9): p. 4192-4198.
7. Zhang, L., M.C. Anderson, and C.Y. Liu, The role of corneal stroma: A potential nutritional source for the cornea. J Nat Sci, 2017. 3(8).
8. Carrington, L.M. and M. Boulton, Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. Journal of Cataract & Refractive Surgery, 2005. 31(2): p. 412-423.
9. Meek, K.M., Corneal collagen-its role in maintaining corneal shape and transparency. Biophys Rev, 2009. 1(2): p. 83-93.
10. Meek, K.M. and C. Knupp, Corneal structure and transparency. Prog Retin Eye Res, 2015. 49: p. 1-16.
11. Matthyssen, S., et al., Corneal Regeneration: a Review of Stromal Replacements. Acta biomaterialia, 2018. 69.
12. de Oliveira, R.C. and S.E. Wilson, Descemet's membrane development, structure, function and regeneration. Exp Eye Res, 2020. 197: p. 108090.
13. Murphy, C., J. Alvarado, and R. Juster, Prenatal and postnatal growth of the human Descemet's membrane. Investigative ophthalmology & visual science, 1984. 25(12): p. 1402-1415.
14. Moczar, M. and E. Moczar, Biochemical aspects of the maturation of corneal stroma and Descemet's membrane. Archives d'ophtalmologie et revue generale d'ophtalmologie, 1975. 35(1): p. 83-90.
15. Wulle, K. and W. Lerche, Electron microscopic observations of the early development of the human corneal endothelium and Descemet's membrane. Ophthalmologica, 1969. 157(6): p. 451-461.
16. Randleman, J.B., et al., Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. J Refract Surg, 2008. 24(1): p. S85-9.
17. Pigatto, J., et al., Scanning electron microscopy of the corneal endothelium of ostrich. Ciencia Rural - CIENC RURAL, 2009. 39.
18. Qazi, Y., et al., Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull, 2010. 81(2-3): p. 198-210.
19. Duman, R., et al., Corneal endothelial cell density in healthy Caucasian population. Saudi J Ophthalmol, 2016. 30(4): p. 236-239.
20. Ayala, G., M.E. Dı́az, and L. Martı́nez-Costa, Granulometric moments and corneal endothelium status. Pattern Recognition, 2001. 34(6): p. 1219-1227.
21. Brockmann, T., et al., Predictive Factors for Clinical Outcomes after Primary Descemet's Membrane Endothelial Keratoplasty for Fuchs' Endothelial Dystrophy. Curr Eye Res, 2019. 44(2): p. 147-153.
22. Price, M.O., et al., Corneal endothelial dysfunction: Evolving understanding and treatment options. Progress in Retinal and Eye Research, 2021. 82: p. 100904.
23. Ong Tone, S., et al., Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Progress in Retinal and Eye Research, 2021. 80: p. 100863.
24. Taylor, D.M., et al., Pseudophakic Bullous Keratopathy. Ophthalmology, 1983. 90(1): p. 19-24.
25. Güell, J.L., et al., Historical Review and Update of Surgical Treatment for Corneal Endothelial Diseases. Ophthalmology and Therapy, 2014. 3(1): p. 1-15.
26. Amouzegar, A., S.K. Chauhan, and R. Dana, Alloimmunity and Tolerance in Corneal Transplantation. The Journal of Immunology, 2016. 196(10): p. 3983-3991.
27. Tan, D.T.H., et al., Corneal transplantation. The Lancet, 2012. 379(9827): p. 1749-1761.
28. Williams, K.A., et al., Risk factors for human corneal graft failure within the Australian corneal graft registry. Transplantation, 2008. 86(12): p. 1720-1724.
29. Ti, S.-E., et al., Therapeutic keratoplasty for advanced suppurative keratitis. American Journal of Ophthalmology, 2007. 143(5): p. 755-762. e2.
30. Luengo-Gimeno, F., D.T. Tan, and J.S. Mehta, Evolution of deep anterior lamellar keratoplasty (DALK). The Ocular Surface, 2011. 9(2): p. 98-110.
31. Terry, M.A., Deep lamellar endothelial keratoplasty (DLEK): pursuing the ideal goals of endothelial replacement. Eye, 2003. 17(8): p. 982-988.
32. Sharma, N., et al., Descemet stripping automated endothelial keratoplasty. Indian J Ophthalmol, 2017. 65(3): p. 198-209.
33. Melles, G.R.J., et al., Descemet Membrane Endothelial Keratoplasty (DMEK). Cornea, 2006. 25(8): p. 987-990.
34. Singh, R., et al., Corneal transplantation in the modern era. Indian J Med Res, 2019. 150(1): p. 7-22.
35. Gain, P., et al., Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol, 2016. 134(2): p. 167-73.
36. Qazi, Y. and P. Hamrah, Corneal Allograft Rejection: Immunopathogenesis to Therapeutics. J Clin Cell Immunol, 2013. 2013(Suppl 9).
37. Maguire, M.G., et al., Risk factors for corneal graft failure and rejection in the collaborative corneal transplantation studies. Collaborative Corneal Transplantation Studies Research Group. Ophthalmology, 1994. 101(9): p. 1536-47.
38. Zhou, R. and R.R. Caspi, Ocular immune privilege. F1000 Biol Rep, 2010. 2.
39. Armitage, W.J., et al., High-risk Corneal Transplantation: Recent Developments and Future Possibilities. Transplantation, 2019. 103(12): p. 2468-2478.
40. Hill, J.C., R. Maske, and P. Watson, Corticosteroids in corneal graft rejection. Oral versus single pulse therapy. Ophthalmology, 1991. 98(3): p. 329-33.
41. Gurnani B, C.C., Mahabadi N, et al. Corneal. Corneal Graft Rejection. 2022 Oct 7; https://www.ncbi.nlm.nih.gov/books/NBK519043/].
42. Randleman, J.B. and R.D. Stulting, Prevention and treatment of corneal graft rejection: current practice patterns (2004). Cornea, 2006. 25(3): p. 286-290.
43. Dekaris, I., et al., Three-year corneal graft survival rate in high-risk cases treated with subconjunctival and topical bevacizumab. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015. 253(2): p. 287-294.
44. Yamaguchi, T., et al., Elevation of preoperative recipient aqueous cytokine levels in eyes with primary graft failure after corneal transplantation. Mol Vis, 2018. 24: p. 613-620.
45. Yagi-Yaguchi, Y., et al., Preoperative Aqueous Cytokine Levels Are Associated With a Rapid Reduction in Endothelial Cells After Penetrating Keratoplasty. Am J Ophthalmol, 2017. 181: p. 166-173.
46. Fuest, M., et al., Advances in corneal cell therapy. Regen Med, 2016. 11(6): p. 601-15.
47. Zhu, Y.T., et al., Nuclear p120 catenin unlocks mitotic block of contact-inhibited human corneal endothelial monolayers without disrupting adherent junctions. J Cell Sci, 2012. 125(Pt 15): p. 3636-48.
48. Liu, Y., et al., Human Corneal Endothelial Cells Expanded In Vitro Are a Powerful Resource for Tissue Engineering. Int J Med Sci, 2017. 14(2): p. 128-135.
49. Alio, J.L., et al., Corneal graft failure: an update. British Journal of Ophthalmology, 2021. 105(8): p. 1049-1058.
50. Shimmura-Tomita, M., et al., Keratoplasty postoperative treatment update. Cornea, 2013. 32 Suppl 1: p. S60-4.
51. Rinne, J.R. and R.D. Stulting, Current Practices in the Prevention and Treatment of Corneal Graft Rejection. Cornea, 1992. 11(4): p. 326-328.
52. Awan, M.A., et al., Penetration of topical and subconjunctival corticosteroids into human aqueous humour and its therapeutic significance. Br J Ophthalmol, 2009. 93(6): p. 708-13.
53. Hill, J.C., R. Maske, and P. Watson, Corticosteroids in Corneal Graft Rejection: Oral versus Single Pulse Therapy. Ophthalmology, 1991. 98(3): p. 329-333.
54. Phulke, S., et al., Steroid-induced Glaucoma: An Avoidable Irreversible Blindness. J Curr Glaucoma Pract, 2017. 11(2): p. 67-72.
55. Tian, H., J. Wu, and M. Ma, Implications of macrophage polarization in corneal transplantation rejection. Transplant Immunology, 2021. 64: p. 101353.
56. Coleman, J.W., Nitric oxide in immunity and inflammation. Int Immunopharmacol, 2001. 1(8): p. 1397-406.
57. Muenster, S., et al., The Ability of Nitric Oxide to Lower Intraocular Pressure Is Dependent on Guanylyl Cyclase. Invest Ophthalmol Vis Sci, 2017. 58(11): p. 4826-4835.
58. Park, J.-H., et al., Effect of Nitric Oxide on Human Corneal Epithelial Cell Viability and Corneal Wound Healing. Scientific Reports, 2017. 7(1): p. 8093.
59. Vanin, A.F., et al., Factors influencing formation of dinitrosyl complexes of non-heme iron in vitro preparations of mouse liver and yeasts. Biofizika, 1977. 22(4): p. 646-650.
60. Vanin, A., S. Kiladze, and L. Kubrina, Factors influencing formation of dinitrosyl complexes of non-heme iron in the organs of animals in vivo. Biofizika, 1977. 22(5): p. 850-855.
61. Pectol, D.C., et al., Toward the Optimization of Dinitrosyl Iron Complexes as Therapeutics for Smooth Muscle Cells. Mol Pharm, 2019. 16(7): p. 3178-3187.
62. Durante, W., et al., Nitric oxide induces heme oxygenase-1 gene expression and carbon monoxide production in vascular smooth muscle cells. Circ Res, 1997. 80(4): p. 557-64.
63. Choi, A.M. and J. Alam, Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol, 1996. 15(1): p. 9-19.
64. Pae, H.O., et al., A molecular cascade showing nitric oxide-heme oxygenase-1-vascular endothelial growth factor-interleukin-8 sequence in human endothelial cells. Endocrinology, 2005. 146(5): p. 2229-38.
65. Suk Lee, D., et al., Effective suppression of nitric oxide production by HX106N through transcriptional control of heme oxygenase-1. Exp Biol Med (Maywood), 2015. 240(9): p. 1136-46.
66. Alcaraz, M.J., et al., Heme oxygenase-1 induction by nitric oxide in RAW 264.7 macrophages is upregulated by a cyclo-oxygenase-2 inhibitor. Biochim Biophys Acta, 2001. 1526(1): p. 13-6.
67. Otterbein, L.E., R. Foresti, and R. Motterlini, Heme Oxygenase-1 and Carbon Monoxide in the Heart: The Balancing Act Between Danger Signaling and Pro-Survival. Circ Res, 2016. 118(12): p. 1940-1959.
68. Bauer, M. and I. Bauer, Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal, 2002. 4(5): p. 749-58.
69. Lever, J.M., et al., Heme Oxygenase-1 in Kidney Health and Disease. Antioxid Redox Signal, 2016. 25(3): p. 165-83.
70. Nitti, M., et al., Heme Oxygenase 1 in the Nervous System: Does It Favor Neuronal Cell Survival or Induce Neurodegeneration? Int J Mol Sci, 2018. 19(8).
71. Schumacher, A. and A.C. Zenclussen, Effects of heme oxygenase-1 on innate and adaptive immune responses promoting pregnancy success and allograft tolerance. Front Pharmacol, 2014. 5: p. 288.
72. Maines, M.D., J.A. Mark, and J.F. Ewing, Heme Oxygenase, a Likely Regulator of cGMP Production in the Brain: Induction in Vivo of HO-1 Compensates for Depression in NO Synthase Activity. Mol Cell Neurosci, 1993. 4(5): p. 396-405.
73. Duvigneau, J.C., H. Esterbauer, and A.V. Kozlov, Role of Heme Oxygenase as a Modulator of Heme-Mediated Pathways. Antioxidants (Basel), 2019. 8(10).
74. Lima, M.G., et al., Nitric oxide as a regulatory molecule in the processing of the visual stimulus. Nitric Oxide, 2014. 36: p. 44-50.
75. Kuzin, B., et al., Nitric oxide interacts with the retinoblastoma pathway to control eye development in Drosophila. Current Biology, 2000. 10(8): p. 459-462.
76. Kim, J.C., et al., The role of nitric oxide in ocular surface diseases. Adv Exp Med Biol, 2002. 506(Pt A): p. 687-95.
77. https://www.drugs.com/monograph/nitric-oxide.html.
78. https://www.drugs.com/mtm/isosorbide-dinitrate.html.
79. https://www.drugs.com/isosorbide_mononitrate.html.
80. https://www.drugs.com/ppa/nitroprusside.html.
81. https://www.drugs.com/monograph/nitroglycerin.html.
82. https://www.drugs.com/ppa/latanoprostene-bunod.html.
83. Clark, R.H., et al., Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med, 2000. 342(7): p. 469-74.
84. INO Therapeutics. INOmax (nitric oxide) gas for inhalation prescribing information. Bedminster, NJ; 2019 Feb.
85. Alessandri, F., F. Pugliese, and V.M. Ranieri, The Role of Rescue Therapies in the Treatment of Severe ARDS. Respir Care, 2018. 63(1): p. 92-101.
86. 蔡輝樟;劉映彤;盧余青;郭姿子, Respiratory Care Experience of Using Nitric Oxide for Persistent Pulmonary Hypertension of the Newborn. Journal of Respiratory Therapy, 2018. 17: p. 69.
87. Garcia, G.A., et al., Critical evaluation of latanoprostene bunod in the treatment of glaucoma. Clin Ophthalmol, 2016. 10: p. 2035-2050.
88. Alimoradi, H., et al., Controlled Delivery of Nitric Oxide for Cancer Therapy. Pharm Nanotechnol, 2019. 7(4): p. 279-303.
89. Cole, R.E. and R.I. Goldberg, Timed-release pentaerythritol tetranitrate and placebo in the management of angina pectoris. Curr Ther Res Clin Exp, 1967. 9(11): p. 551-7.
90. Dagenais, G.R., et al., Exercise tolerance in patients with angina pectoris: daily variation and effect of pentaerythritol tetranitrate. Johns Hopkins Med J, 1969. 125(6): p. 301-11.
91. Mellen, H.S., H.S. Goldberg, and H.F. Friedman, Therapeutic effects of pentaerythritol tetranitrate in the immediate postmyocardial-infarction period. N Engl J Med, 1967. 276(6): p. 319-22.
92. Russek, H.I., The therapeutic role of coronary vasodilators: glyceryl trinitrate, isosorbide dinitrate, and pentaerythritol tetranitrate. Am J Med Sci, 1966. 252(1): p. 9-20.
93. Siegel, M.B., Study of a timed-release preparation of pentaerythritol tetranitrate. West Med Med J West, 1966. 7(8): p. 218-21.
94. Divakaran, S. and J. Loscalzo, The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics. Journal of the American College of Cardiology, 2017. 70(19): p. 2393-2410.
95. Jones, H.O. and H.S. Tasker, CCXI.—The action of mercaptans on acid chlorides. Part I. Oxalyl chloride; the mono- and dithio-oxalates. Journal of the Chemical Society, Transactions, 1909. 95(0): p. 1904-1909.
96. Yang, Y. and J. Loscalzo, CHAPTER 10 - S-nitrosated proteins: formation, metabolism, and function, in Radicals for Life, E. Van Faassen and A. Fyodorovich Vanin, Editors. 2007, Elsevier: Amsterdam. p. 201-221.
97. Megson, I.L., et al., N‐substituted analogues of S‐nitroso‐N‐acetyl‐D, L‐penicillamine: chemical stability and prolonged nitric oxide mediated vasodilatation in isolated rat femoral arteries. British journal of pharmacology, 1999. 126(3): p. 639-648.
98. Vilahur, G., et al., Inhibition of thrombosis by a novel platelet selective S-nitrosothiol compound without hemodynamic side effects*. Cardiovascular Research, 2004. 61(4): p. 806-816.
99. Parent, M., et al., In Situ Microparticles Loaded with S-Nitrosoglutathione Protect from Stroke. PLoS One, 2015. 10(12): p. e0144659.
100. Morley, D. and L.K. Keefer, Nitric oxide/nucleophile complexes: a unique class of nitric oxide-based vasodilators. Journal of cardiovascular pharmacology, 1993. 22: p. S3-9.
101. Maragos, C.M., et al., Complexes of. NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. Journal of medicinal chemistry, 1991. 34(11): p. 3242-3247.
102. Laschak, M., et al., JS-K, a glutathione/glutathione S-transferase-activated nitric oxide releasing prodrug inhibits androgen receptor and WNT-signaling in prostate cancer cells. BMC Cancer, 2012. 12: p. 130.
103. Vanin, A.F., Dinitrosyl iron complexes with thiol-containing ligands as a “working form” of endogenous nitric oxide. Nitric Oxide, 2016. 54: p. 15-29.
104. Vanin, A.F., Dinitrosyl iron complexes as a “working form” of nitric oxide in living organisms. 2019: Cambridge Scholars Publishing.
105. Vanin, A. and R. Nalbandyan, Free radical species with unpaired electron localization on sulfur atom in yeast cells. Biofizika (Rus), 1966. 11: p. 178.
106. Nalbandyan, R., A. Vanin, and L. Blumenfeld, EPR signals of a new type in yeast cells. Proceedings of the free radicals processes in biological systems, 1964: p. 18.
107. Wu, C.-R., et al., Endogenous Conjugation of Biomimetic Dinitrosyl Iron Complex with Protein Vehicles for Oral Delivery of Nitric Oxide to Brain and Activation of Hippocampal Neurogenesis. JACS Au, 2021.
108. Chazov, E.I., et al., Hypotensive effect of Oxacom® containing a dinitrosyl iron complex with glutathione: animal studies and clinical trials on healthy volunteers. Nitric Oxide, 2012. 26(3): p. 148-156.
109. Cho, S.-L., C.-J. Liao, and T.-T. Lu, Synthetic methodology for preparation of dinitrosyl iron complexes. JBIC Journal of Biological Inorganic Chemistry, 2019. 24(4): p. 495-515.
110. Vanin, A.F., et al., The 2.03 Signal as an Indicator of Dinitrosyl–Iron Complexes with Thiol-Containing Ligands. Nitric Oxide, 1998. 2(4): p. 224-234.
111. Chen, Y.-J., et al., Nitric Oxide Physiological Responses and Delivery Mechanisms Probed by Water-Soluble Roussin’s Red Ester and {Fe(NO)2}10 DNIC. Journal of the American Chemical Society, 2008. 130(33): p. 10929-10938.
112. Truzzi, D.R., et al., Dinitrosyl Iron Complexes (DNICs). From Spontaneous Assembly to Biological Roles. Inorganic Chemistry, 2021.
113. Tung, C.-Y., et al., Insight into the Electronic Structure of Biomimetic Dinitrosyliron Complexes (DNICs): Toward the Syntheses of Amido-Bridging Dinuclear DNICs. Inorganic Chemistry, 2021.
114. Chen, Y.-J., et al., Nitric oxide physiological responses and delivery mechanisms probed by water-soluble Roussin’s red ester and {Fe (NO) 2} 10 DNIC. Journal of the American Chemical Society, 2008. 130(33): p. 10929-10938.
115. Shekhter, A.B., et al., Dinitrosyl iron complexes with glutathione incorporated into a collagen matrix as a base for the design of drugs accelerating skin wound healing. European Journal of Pharmaceutical Sciences, 2015. 78: p. 8-18.
116. Chen, Y.-J., et al., Activation of angiogenesis and wound healing in diabetic mice using NO-delivery dinitrosyl iron complexes. Molecular pharmaceutics, 2019. 16(10): p. 4241-4251.
117. Тimoshin, A.А., et al., The hypotensive effect of the nitric monoxide donor Oxacom at different routs of its administration to experimental animals. European Journal of Pharmacology, 2015. 765: p. 525-532.
118. Valtink, M., et al., Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics. Cells Tissues Organs, 2008. 187(4): p. 286-94.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *