帳號:guest(18.116.14.35)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林言頻
作者(外文):Lin, Yen-Pin
論文名稱(中文):評估施打不同感染性疫苗組合對孕婦及胎兒免疫反應之影響
論文名稱(外文):Evaluation of the effect between different infectious vaccines on the immune response of pregnant women and fetuses
指導教授(中文):鄭兆珉
沈靜芬
指導教授(外文):Cheng, Chao-Min
Shen, Ching-Fen
口試委員(中文):魯才德
沈靜茹
口試委員(外文):Lu, Tsai-Te
Shen, Ching-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物醫學工程研究所
學號:110038506
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:102
中文關鍵詞:孕婦新生兒COVID-19mRNA疫苗SARS-CoV-2變異株酵素結合免疫吸附分析法microRNA生物標誌物
外文關鍵詞:pregnant womennewbornsCOVID-19mRNA vaccinesSARS-CoV-2 variantsELISAmicroRNAbiomarker
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
新型冠狀肺炎 ( COVID-19 ),由 SARS-CoV-2 所引發的全球性大流行傳染病,於2019年底對於人類的健康帶來嚴重的傷害,隨後在2020年初迅速擴散至全球多國,逐漸變成一場全球性大瘟疫。在懷孕期間感染COVID-19的孕婦其死亡率及產期併發症都會比未懷孕的婦女來得高,也會大幅提升胎兒死在子宮內的機率。雖然以目前來說依舊沒有疫苗適合給新生兒接種,但是在之前與疫苗相關的研究中指出孕婦在施打疫苗後所產生的抗體可以通過胎盤及母乳傳遞,可以透過這種方式來保護新生兒。本研究以評估孕婦施打不同種類的新冠肺炎疫苗與新生兒之間的抗體傳遞效率為主軸,本實驗收集超過200位施打過新冠肺炎疫苗之20歲以上孕婦,主要以酵素結合免疫吸附分析法 (ELISA) 去進行SARS-CoV-2 Spike RBD的中和抗體檢測,以打兩劑或是三劑的孕婦為主,採集在生產時的孕婦血液以及新生兒臍帶血,測量其中和抗體濃度以及IgG濃度,整理病人的臨床資料(如打多少劑、疫苗種類、施打疫苗與生產相差週數、施打時妊娠週數、是否有特殊疾病等),另外再對檢體做MicroRNA Array來探討mRNA疫苗對於免疫系統microRNA調控是否有影響來進行結果分析。最後加上前面ELISA套組檢測、患者之臨床數據結果綜合起來,以評估孕婦施打新冠肺炎疫苗的劑數、種類及施打時間對於不同SARS-CoV-2變異株中和抗體傳遞效率,以及有無施打百日咳或流感疫苗是否會對新冠肺炎疫苗接種後抗體濃度生成及胎盤傳遞造成影響。本研究最終目標是希望能藉由了解孕婦施打新冠肺炎疫苗後之免疫反應及不同疫苗之間是否會有相互影響,去強調開發有效的疫苗策略的重要性,提高預測適當的疫苗接種時間之準確性以利於給予孕婦更有效的疫苗接種建議,更加保障孕婦及小孩的未來。
COVID-19, caused by SARS-CoV-2 in the end of 2019. It quickly spread to many countries around the world and gradually turned into a global pandemic. Pregnant women who contract COVID-19 during pregnancy have higher rates of mortality and perinatal complications than non-pregnant women, as well as a significantly higher chance of stillbirth. Although there is still no vaccine suitable for neonatal vaccination, previous vaccine-related studies have pointed out that the antibodies produced by pregnant women after vaccination can be transmitted through the placenta and breast milk and can provide effective neonatal protection. This study focuses on evaluating the efficiency of antibody transmission between pregnant women who are administered different types of COVID-19 vaccines and their newborns. The experiment mainly uses ELISA to conduct the SARS-CoV-2 neutralizing antibody test of SRBD collects more than 200 pregnant women over 20 years old who have been vaccinated against the new coronary pneumonia, mainly pregnant women who have received two or three doses, and collect the blood of pregnant women and newborns during delivery. Measure the concentration of different variants neutralizing antibody and IgG and organize the clinical data of the patient, and then do MicroRNA Array to explore whether the mRNA vaccine has an effect on the immune system to analyze the results. Finally, all of the results were combined to evaluate the delivery efficiency of neutralizing antibodies to different SARS-CoV-2 variant. And whether the presence or absence of pertussis or influenza vaccine affects the production of antibody concentrations and placental transmission after COVID-19 vaccination. The goal of this study is to underscore the importance of developing effective vaccine strategies and improve the prediction of appropriate vaccination by understanding the immune response of pregnant women following COVID-19 vaccine and whether there is an interaction between different vaccines. Accuracy of time to give pregnant women more effective vaccines followed by advice to protect the future of pregnant women and their children.
摘要-----------------------------------------------------------------I
Abstract------------------------------------------------------------II
謝誌---------------------------------------------------------------III
目錄----------------------------------------------------------------IV
圖目錄--------------------------------------------------------------VI
表目錄--------------------------------------------------------------IX
第一章 緒論-----------------------------------------------------------1
1-1嚴重特殊傳染性肺炎(COVID-19)--------------------------------------1
1-1-1嚴重急性呼吸道症候群冠狀病毒2型(SARS-CoV-2)----------------------2
1-1-2冠狀病毒棘蛋白 ( Spike Protein )---------------------------------3
1-1-3 SARS-CoV-2不同變異株--------------------------------------------5
1-2 SARS-CoV-2以及COVID-19疫苗產生的免疫反應---------------------------8
1-2-1病毒感染之免疫反應-----------------------------------------------8
1-2-2疫苗引起之免疫反應----------------------------------------------10
1-2-3 COVID-19不同種類之疫苗-----------------------------------------11
1-3 懷孕婦女施打疫苗的效益及對新生兒的影響-----------------------------13
1-3-1懷孕期間感染COVID-19的風險--------------------------------------14
1-3-2對孕婦懷孕期間施打COVID-19疫苗之建議-----------------------------14
1-4 研究動機--------------------------------------------------------16
第二章 實驗材料與方法------------------------------------------------17
2-1 研究對象--------------------------------------------------------17
2-2 實驗設計--------------------------------------------------------18
2-3 酵素結合免疫吸附分析法 (Enzyme-linked immunosorbent assay)--------19
2-3-1 IgG抗體檢測套組------------------------------------------------21
2-3-2 SARS-CoV-2中和抗體檢測套組(SARS-CoV-2 Surrogate Virus Neutraliz
ation Test Kit )----------------------------------------------------22
2-4 micorRNA qPCR分析-----------------------------------------------25
2-5 統計分析--------------------------------------------------------27
第三章 SARS-CoV-2中和抗體實驗結果與討論-------------------------------28
3-1 對孕婦及新生兒之間SARS-CoV-2中和抗體傳遞之初步評估-----------------28
3-2 比較SARS-CoV-2 Alpha, Beta, Gamma變異株中和抗體傳遞效率差異-------36
3-3 比較季節性流感和百日咳疫苗在孕婦中對新冠疫苗的免疫影響---------------45
3-4 使用側向流體免疫分析法結合基於光譜分析器檢測接種疫苗的孕婦和新生兒的SARS-CoV-2中和抗體--------------------------------------------------55
第四章 MicroRNA Array實驗結果與討論----------------------------------60
4-1 以打三劑mRNA疫苗和未施打任何疫苗的孕婦做初步評估--------------------60
4-2 mRNA疫苗接種後與炎症細胞因子相關的血漿microRNAs--------------------64
第五章 結論與未來展望------------------------------------------------87
參考文獻 ------------------------------------------------------------93
著作目錄 -----------------------------------------------------------102
1. Hui DS, I. A. E., Madani TA, Ntoumi F, Kock R, Dar O, Ippolito G, Mchugh TD, Memish ZA, Drosten C, Zumla A, Petersen E., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020, 91, 264-266.
2. World Health Organization. Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. http://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020.
3. CDC How covid spreads Available. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html
4. Stadnytskyi, V.; Bax, C. E.; Bax, A.; Anfinrud, P., The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proceedings of the National Academy of Sciences 2020, 117 (22), 11875-11877.
5. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19): Symptoms. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html.
6. Oran, D. P.; Topol, E. J., Prevalence of Asymptomatic SARS-CoV-2 Infection : A Narrative Review. Ann Intern Med 2020, 173 (5), 362-367.
7. .
8. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected. https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf.
9. Wu, J. T.; Leung, K.; Leung, G. M., Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 2020, 395 (10225), 689-697.
10. Coronavirus. SARS-CoV-2. https://commons.wikimedia.org/w/index.php?curid=104914011.
11. Deng, X.; Baker, S. C., Coronaviruses: Molecular Biology (Coronaviridae). Encyclopedia of Virology 2021, 198-207.
12. 黃建賢; 陳威宇; 張藏能, 中東呼吸症候群與感染控制. 台灣醫學 2016, 20 (4), 406-410.
13. Sharma, A.; Tiwari, S.; Deb, M. K.; Marty, J. L., Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int J Antimicrob Agents 2020, 56 (2), 106054-106054.
14. Liu, C.; Yang, Y.; Gao, Y.; Shen, C.; Ju, B.; Liu, C.; Tang, X.; Wei, J.; Ma, X.; Liu, W.; Xu, S.; Liu, Y.; Yuan, J.; Wu, J.; Liu, Z.; Zhang, Z.; Wang, P.; Liu, L., Viral Architecture of SARS-CoV-2 with Post-Fusion Spike Revealed by Cryo-EM. bioRxiv 2020.
15. Bosch, B. J.; van der Zee, R.; de Haan, C. A.; Rottier, P. J., The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003, 77 (16), 8801-11.
16. Watanabe, Y.; Allen, J. D.; Wrapp, D.; McLellan, J. S.; Crispin, M., Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020, 369 (6501), 330-333.
17. Letko, M.; Marzi, A.; Munster, V., Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020, 5 (4), 562-569.
18. Perrotta, F.; Matera, M. G.; Cazzola, M.; Bianco, A., Severe respiratory SARS-CoV2 infection: Does ACE2 receptor matter? Respiratory Medicine 2020, 168, 105996.
19. Min, L.; Sun, Q., Antibodies and Vaccines Target RBD of SARS-CoV-2. Frontiers in Molecular Biosciences 2021, 8.
20. Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; Müller, M. A.; Drosten, C.; Pöhlmann, S., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181 (2), 271-280.e8.
21. Huang, Y.; Yang, C.; Xu, X.-f.; Xu, W.; Liu, S.-w., Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica 2020, 41 (9), 1141-1149.
22. Li, F., Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu Rev Virol 2016, 3 (1), 237-261.
23. V'Kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V., Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol 2021, 19 (3), 155-170.
24. WHO labels a Covid strain in India as a 'variant of concern' — here's what we know. https://www.cnbc.com/2021/05/11/india-covid-explainer-what-we-know-about-the-bpoint1point617-variant.html.
25. SARS-CoV-2 Delta variant. https://en.wikipedia.org/wiki/SARS-CoV-2_Delta_variant.
26. Viana, R.; Moyo, S.; Amoako, D. G.; Tegally, H.; Scheepers, C.; Althaus, C. L.; Anyaneji, U. J.; Bester, P. A.; Boni, M. F.; Chand, M., Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603 (7902), 679-686.
27. NYT: Omicron is not just milder, its risk is akin to the flu. https://hotair.com/ed-morrissey/2022/01/05/nyt-omicron-is-not-just-milder-its-risk-is-akin-to-the-flu-n439465.
28. Lewnard, J. A.; Hong, V. X.; Patel, M. M.; Kahn, R.; Lipsitch, M.; Tartof, S. Y., Clinical outcomes among patients infected with Omicron (B.1.1.529) SARS-CoV-2 variant in southern California. medRxiv 2022.
29. Omicron Covid variant poses very high global risk, says WHO. https://www.theguardian.com/world/2021/nov/29/omicron-covid-variant-poses-very-high-global-risk-says-who.
30. Desingu, P. A.; Nagarajan, K.; Dhama, K., Emergence of Omicron third lineage BA. 3 and its importance. Journal of medical virology 2022, 94 (5), 1808-1810.
31. Lyngse, F. P.; Kirkeby, C. T.; Denwood, M.; Christiansen, L. E.; Mølbak, K.; Møller, C. H.; Skov, R. L.; Krause, T. G.; Rasmussen, M.; Sieber, R. N., Transmission of SARS-CoV-2 Omicron VOC subvariants BA. 1 and BA. 2: evidence from Danish Households. MedRxiv 2022.
32. Chen, J.; Wei, G.-W., Omicron BA.2 (B.1.1.529.2): High Potential for Becoming the Next Dominant Variant. The Journal of Physical Chemistry Letters 2022, 13 (17), 3840-3849.
33. Tegally, H.; Moir, M.; Everatt, J.; Giovanetti, M.; Scheepers, C.; Wilkinson, E.; Subramoney, K.; Makatini, Z.; Moyo, S.; Amoako, D. G.; Baxter, C.; Althaus, C. L.; Anyaneji, U. J.; Kekana, D.; Viana, R.; Giandhari, J.; Lessells, R. J.; Maponga, T.; Maruapula, D.; Choga, W.; Matshaba, M.; Mbulawa, M. B.; Msomi, N.; Bester, A. P.; Claassen, M.; Doolabh, D.; Mudau, I.; Mbhele, N.; Engelbrecht, S.; Goedhals, D.; Hardie, D.; Hsiao, N.-Y.; Iranzadeh, A.; Ismail, A.; Joseph, R.; Maharaj, A.; Mahlangu, B.; Mahlakwane, K.; Davis, A.; Marais, G.; Mlisana, K.; Mnguni, A.; Mohale, T.; Motsatsi, G.; Mwangi, P.; Ntuli, N.; Nyaga, M.; Olubayo, L.; Radibe, B.; Ramphal, Y.; Ramphal, U.; Strasheim, W.; Tebeila, N.; van Wyk, S.; Wilson, S.; Lucaci, A. G.; Weaver, S.; Maharaj, A.; Pillay, Y.; Davids, M.; Mendes, A.; Mayaphi, S.; Naidoo, Y.; Pillay, S.; Sanko, T. J.; San, J. E.; Scott, L.; Singh, L.; Magini, N. A.; Smith-Lawrence, P.; Stevens, W.; Dor, G.; Tshiabuila, D.; Wolter, N.; Preiser, W.; Treurnicht, F. K.; Venter, M.; Chiloane, G.; McIntyre, C.; O’Toole, A.; Ruis, C.; Peacock, T. P.; Roemer, C.; Kosakovsky Pond, S. L.; Williamson, C.; Pybus, O. G.; Bhiman, J. N.; Glass, A.; Martin, D. P.; Jackson, B.; Rambaut, A.; Laguda-Akingba, O.; Gaseitsiwe, S.; von Gottberg, A.; de Oliveira, T.; consortium, N.-S., Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nature Medicine 2022, 28 (9), 1785-1790.
34. Qu, P.; Evans, J. P.; Faraone, J.; Zheng, Y.-M.; Carlin, C.; Anghelina, M.; Stevens, P.; Fernandez, S.; Jones, D.; Lozanski, G.; Panchal, A.; Saif, L. J.; Oltz, E. M.; Xu, K.; Gumina, R. J.; Liu, S.-L., Distinct Neutralizing Antibody Escape of SARS-CoV-2 Omicron Subvariants BQ.1, BQ.1.1, BA.4.6, BF.7 and BA.2.75.2. bioRxiv 2022, 2022.10.19.512891.
35. WHO TAG-VE statement on Omicron sublineages BQ.1 and XBB. https://www.who.int/news/item/27-10-2022-tag-ve-statement-on-omicron-sublineages-bq.1-and-xbb.
36. By the Numbers: COVID-19 Vaccines and Omicron. https://www.healthline.com/health-news/by-the-numbers-covid-19-vaccines-and-omicron.
37. Immune system. https://en.wikipedia.org/wiki/Immunesystem.
38. How does the immune system work? https://www.ncbi.nlm.nih.gov/books/NBK279364/.
39. Turvey, S. E.; Broide, D. H., Innate immunity. J Allergy Clin Immunol 2010, 125 (2 Suppl 2), S24-S32.
40. Moretta, A.; Bottino, C.; Mingari, M. C.; Biassoni, R.; Moretta, L., What is a natural killer cell? Nature Immunology 2002, 3 (1), 6-8.
41. Rosen, G. M.; Pou, S.; Ramos, C. L.; Cohen, M. S.; Britigan, B. E., Free radicals and phagocytic cells. The FASEB Journal 1995, 9 (2), 200-209.
42. O'Leary, J. G.; Goodarzi, M.; Drayton, D. L.; von Andrian, U. H., T cell– and B cell–independent adaptive immunity mediated by natural killer cells. Nature Immunology 2006, 7 (5), 507-516.
43. Bonilla, F. A.; Oettgen, H. C., Adaptive immunity. J Allergy Clin Immunol 2010, 125 (2 Suppl 2), S33-40.
44. Luckheeram, R. V.; Zhou, R.; Verma, A. D.; Xia, B., CD4+T Cells: Differentiation and Functions. Clinical and Developmental Immunology 2012, 2012, 925135.
45. Zhang, N.; Bevan, Michael J., CD8+ T Cells: Foot Soldiers of the Immune System. Immunity 2011, 35 (2), 161-168.
46. Immunology for Non-Immunologists: Innate vs. Adaptive Immunity. https://cellero.com/blog/immunology-for-non-immunologists-innate-vs-adaptive-immunity/.
47. Alberts B, J. A., Lewis J, et al., Molecular Biology of the Cell. New York: Garland Science: 2002.
48. Antigen. https://zh.wikipedia.org/zh-tw/%E6%8A%97%E5%8E%9F.
49. Anibody. https://zh.wikipedia.org/zh-tw/%E6%8A%97%E4%BD%93.
50. Jain, S.; Batra, H.; Yadav, P.; Chand, S., COVID-19 Vaccines Currently under Preclinical and Clinical Studies, and Associated Antiviral Immune Response. Vaccines (Basel) 2020, 8 (4), 649.
51. mRNA vaccine. https://en.wikipedia.org/wiki/MRNA_vaccine.
52. Mahase, E., Covid-19: Moderna vaccine is nearly 95% effective, trial involving high risk and elderly people shows. BMJ 2020, 371, m4471.
53. Oliver, S. E.; Gargano, J. W.; Marin, M.; Wallace, M.; Curran, K. G.; Chamberland, M.; McClung, N.; Campos-Outcalt, D.; Morgan, R. L.; Mbaeyi, S.; Romero, J. R.; Talbot, H. K.; Lee, G. M.; Bell, B. P.; Dooling, K., The Advisory Committee on Immunization Practices' Interim Recommendation for Use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020. MMWR Morb Mortal Wkly Rep 2020, 69 (50), 1922-1924.
54. What Is mRNA? Here’s A Crash Course On What It Does. https://www.civilbeat.org/2021/04/what-is-mrna-heres-a-crash-course-on-what-it-does/.
55. COVID-19疫苗統計資料 - 衛生福利部疾病管制署. https://www.cdc.gov.tw/Category/Page/9jFXNbCe-sFK9EImRRi2Og.
56. DeSisto, C. L.; Wallace, B.; Simeone, R. M.; Polen, K.; Ko, J. Y.; Meaney-Delman, D.; Ellington, S. R., Risk for Stillbirth Among Women With and Without COVID-19 at Delivery Hospitalization - United States, March 2020-September 2021. MMWR Morb Mortal Wkly Rep 2021, 70 (47), 1640-1645.
57. Khalil, A.; Kalafat, E.; Benlioglu, C.; O'Brien, P.; Morris, E.; Draycott, T.; Thangaratinam, S.; Le Doare, K.; Heath, P.; Ladhani, S.; von Dadelszen, P.; Magee, L. A., SARS-CoV-2 infection in pregnancy: A systematic review and meta-analysis of clinical features and pregnancy outcomes. EClinicalMedicine 2020, 25, 100446-100446.
58. CDC, U. S. COVID-19 Vaccines While Pregnant or Breastfeeding. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/recommendations/pregnancy.html.
59. Zauche, L. H.; Wallace, B.; Smoots, A. N.; Olson, C. K.; Oduyebo, T.; Kim, S. Y.; Petersen, E. E.; Ju, J.; Beauregard, J.; Wilcox, A. J.; Rose, C. E.; Meaney-Delman, D. M.; Ellington, S. R., Receipt of mRNA Covid-19 Vaccines and Risk of Spontaneous Abortion. New England Journal of Medicine 2021, 385 (16), 1533-1535.
60. Clark, M. F.; Lister, R. M.; Bar-Joseph, M., ELISA techniques. In Methods in Enzymology, Academic Press: 1986; Vol. 118, pp 742-766.
61. MBL Life Science. https://ruo.mbl.co.jp/bio/e/support/method/elisa.html.
62. Immunoglobulin A. https://en.wikipedia.org/wiki/Immunoglobulin_A.
63. Immunoglobulin G https://en.wikipedia.org/wiki/Immunoglobulin_G.
64. Simister, N. E., Placental transport of immunoglobulin G. Vaccine 2003, 21 (24), 3365-3369.
65. Roopenian, D. C.; Akilesh, S., FcRn: the neonatal Fc receptor comes of age. Nature Reviews Immunology 2007, 7 (9), 715-725.
66. Wilcox, C. R.; Holder, B.; Jones, C. E., Factors Affecting the FcRn-Mediated Transplacental Transfer of Antibodies and Implications for Vaccination in Pregnancy. Front Immunol 2017, 8, 1294-1294.
67. Malek, A.; Sager, R.; Kuhn, P.; Nicolaides, K. H.; Schneider, H., Evolution of Maternofetal Transport of Immunoglobulins During Human Pregnancy. American Journal of Reproductive Immunology 1996, 36 (5), 248-255.
68. Tan, C. W.; Chia, W. N.; Qin, X.; Liu, P.; Chen, M. I. C.; Tiu, C.; Hu, Z.; Chen, V. C.-W.; Young, B. E.; Sia, W. R.; Tan, Y.-J.; Foo, R.; Yi, Y.; Lye, D. C.; Anderson, D. E.; Wang, L.-F., A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nature Biotechnology 2020, 38 (9), 1073-1078.
69. NextAmp™ Analysis System - Quark Biosciences. https://www.quarkbiosciences.com/nextamp-analysis-system/.
70. PanelChip® Multi-Gene Expression - Quark Biosciences. https://www.quarkbiosciences.com/system/.
71. Bustin, S. A.; Benes, V.; Garson, J. A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M. W.; Shipley, G. L.; Vandesompele, J.; Wittwer, C. T., The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry 2009, 55 (4), 611-622.
72. Lin, Y.-P.; Hsieh, Y.-S.; Cheng, M.-H.; Shen, C.-F.; Shen, C.-J.; Cheng, C.-M., Using MicroRNA Arrays as a Tool to Evaluate COVID-19 Vaccine Efficacy. Vaccines 2022, 10 (10), 1681.
73. Shen, C.-J.; Fu, Y.-C.; Lin, Y.-P.; Shen, C.-F.; Sun, D.-J.; Chen, H.-Y.; Cheng, C.-M., Evaluation of Transplacental Antibody Transfer in SARS-CoV-2-Immunized Pregnant Women. Vaccines (Basel) 2022, 10 (1), 101.
74. Chen, W.-C.; Lin, Y.-P.; Cheng, C.-M.; Shen, C.-F.; Ching, A.; Chang, T.-C.; Shen, C.-J., Antibodies against SARS-CoV-2 Alpha, Beta, and Gamma Variants in Pregnant Women and Their Neonates under Antenatal Vaccination with Moderna (mRNA-1273) Vaccine. Vaccines 2022, 10 (9), 1415.
75. American College of Obstetricians and Gynecologists (ACOG)Practice Advisory:COVID-19 Vaccination Considerations for Obstetric–Gynecologic Care. https://www.acog.org/clinical/clinical-guidance/practice-advisory/articles/2020/12/covid-19-vaccination-considerations-for-obstetric-gynecologic-care.
76. COVID-19 疫苗接種實務原則. https://www.cdc.gov.tw/Category/MPage/bVELR0eNHUQd_RE80ldpPQ.
77. Shen, C.-J.; Lin, Y.-P.; Hu, S.-Y.; Shen, C.-F.; Chuang, H.-Y.; Ker, C.-R.; Sun, D.-J.; Yang, Y.-H.; Cheng, C.-M., Pilot Study for Immunogenicity of SARS-CoV-2 Vaccine with Seasonal Influenza and Pertussis Vaccines in Pregnant Women. Vaccines 2023, 11 (1), 119.
78. Chen, W.-C.; Lin, Y.-P.; Cheng, C.-M.; Shen, C.-F.; Li, C.-W.; Wang, Y.-K.; Shih, T.-Y.; Hong, C.; Chang, T.-C.; Shen, C.-J., Detection of SARS-CoV-2 Neutralizing Antibodies in Vaccinated Pregnant Women and Neonates by Using a Lateral Flow Immunoassay Coupled with a Spectrum-Based Reader. Biosensors 2022, 12 (10), 891.
79. Zhang, L.; Li, Q.; Liang, Z.; Li, T.; Liu, S.; Cui, Q.; Nie, J.; Wu, Q.; Qu, X.; Huang, W., The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerging microbes & infections 2022, 11 (1), 1-5.
80. Elgueta, R.; De Vries, V. C.; Noelle, R. J., The immortality of humoral immunity. Immunological reviews 2010, 236 (1), 139-150.
81. Fraley, E.; LeMaster, C.; Geanes, E.; Banerjee, D.; Khanal, S.; Grundberg, E.; Selvarangan, R.; Bradley, T., Humoral immune responses during SARS-CoV-2 mRNA vaccine administration in seropositive and seronegative individuals. BMC medicine 2021, 19 (1), 1-12.
82. Oxford Immunotec. T-SPOT.COVID Package Insert. . https://www.tspotcovid.com/wp-content/uploads/sites/5/2021/03/T-SPOT-COVID-US-PI-v3-1.pdf.
83. Arend, S. M.; Geluk, A.; van Meijgaarden, K. E.; van Dissel, J. T.; Theisen, M.; Andersen, P.; Ottenhoff, T. H., Antigenic equivalence of human T-cell responses to Mycobacterium tuberculosis-specific RD1-encoded protein antigens ESAT-6 and culture filtrate protein 10 and to mixtures of synthetic peptides. Infection and immunity 2000, 68 (6), 3314-3321.
84. Jaganathan, S.; Stieber, F.; Rao, S. N.; Nikolayevskyy, V.; Manissero, D.; Allen, N.; Boyle, J.; Howard, J., Preliminary evaluation of QuantiFERON SARS-CoV-2 and QIAreach anti-SARS-CoV-2 total test in recently vaccinated individuals. Infectious Diseases and Therapy 2021, 10 (4), 2765-2776.
85. Légaré, C.; Clément, A.-A.; Desgagné, V.; Thibeault, K.; White, F.; Guay, S.-P.; Arsenault, B. J.; Scott, M. S.; Jacques, P.-É.; Perron, P., Human plasma pregnancy-associated miRNAs and their temporal variation within the first trimester of pregnancy. Reproductive Biology and Endocrinology 2022, 20 (1), 1-13.
86. Tang, H.; Gao, Y.; Li, Z.; Miao, Y.; Huang, Z.; Liu, X.; Xie, L.; Li, H.; Wen, W.; Zheng, Y.; Su, W., The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clinical and Translational Medicine 2020, 10 (6), e200.
87. Farr, R. J.; Rootes, C. L.; Rowntree, L. C.; Nguyen, T. H.; Hensen, L.; Kedzierski, L.; Cheng, A. C.; Kedzierska, K.; Au, G. G.; Marsh, G. A., Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS pathogens 2021, 17 (7), e1009759.
88. Liu, D.; Liu, C.; Wang, X.; Ingvarsson, S.; Chen, H., MicroRNA-451 suppresses tumor cell growth by down-regulating IL6R gene expression. Cancer epidemiology 2014, 38 (1), 85-92.
89. Yang, P.; Zhao, Y.; Li, J.; Liu, C.; Zhu, L.; Zhang, J.; Yu, Y.; Wang, W.-J.; Lei, G.; Yan, J., Downregulated miR-451a as a feature of the plasma cfRNA landscape reveals regulatory networks of IL-6/IL-6R-associated cytokine storms in COVID-19 patients. Cellular & Molecular Immunology 2021, 18 (4), 1064-1066.
90. Wang, X.; Pham, A.; Kang, L.; Walker, S. A.; Davidovich, I.; Iannotta, D.; TerKonda, S. P.; Shapiro, S.; Talmon, Y.; Pham, S.; Wolfram, J., Effects of Adipose-Derived Biogenic Nanoparticle-Associated microRNA-451a on Toll-like Receptor 4-Induced Cytokines. Pharmaceutics 2022, 14 (1), 16.
91. Terao, M.; Fratelli, M.; Kurosaki, M.; Zanetti, A.; Guarnaccia, V.; Paroni, G.; Tsykin, A.; Lupi, M.; Gianni, M.; Goodall, G. J., Induction of miR-21 by retinoic acid in estrogen receptor-positive breast carcinoma cells: biological correlates and molecular targets. Journal of Biological Chemistry 2011, 286 (5), 4027-4042.
92. Hu, S.-L.; Chang, A.-C.; Huang, C.-C.; Tsai, C.-H.; Lin, C.-C.; Tang, C.-H., Myostatin promotes interleukin-1β expression in rheumatoid arthritis synovial fibroblasts through inhibition of miR-21-5p. Frontiers in immunology 2017, 8, 1747.
93. Sheng, S.; Zou, M.; Yang, Y.; Guan, M.; Ren, S.; Wang, X.; Wang, L.; Xue, Y., miR-23a-3p regulates the inflammatory response and fibrosis in diabetic kidney disease by targeting early growth response 1. In Vitro Cellular & Developmental Biology-Animal 2021, 57 (8), 763-774.
94. Cui, B.; Liu, W.; Wang, X.; Chen, Y.; Du, Q.; Zhao, X.; Zhang, H.; Liu, S.-L.; Tong, D.; Huang, Y., Brucella Omp25 upregulates miR-155, miR-21-5p, and miR-23b to inhibit interleukin-12 production via modulation of programmed death-1 signaling in human monocyte/macrophages. Frontiers in immunology 2017, 8, 708.
95. Zhang, S.; Wang, Q.; Li, D.; Huang, B.; Hou, X.; Wang, D.; Xiao, Z.; Meng, H.; Zhang, Y.; Dong, L., Oncolytic vaccinia virus-mediated antitumor effect and cell proliferation were promoted in PTC by regulating circRNA_103598/miR-23a-3p/IL-6 axis. Cancer Management and Research 2020, 12, 10389.
96. Shao, S.; Li, S.; Liu, C.; Zhang, W.; Zhang, Z.; Zhu, S.; Feng, Y.; Pan, Y., Toosendanin induces apoptosis of MKN‑45 human gastric cancer cells partly through miR‑23a‑3p‑mediated downregulation of BCL2. Molecular Medicine Reports 2020, 22 (3), 1793-1802.
97. Miyashita, Y.; Yoshida, T.; Takagi, Y.; Tsukamoto, H.; Takashima, K.; Kouwaki, T.; Makino, K.; Fukushima, S.; Nakamura, K.; Oshiumi, H., Circulating extracellular vesicle microRNAs associated with adverse reactions, proinflammatory cytokine, and antibody production after COVID-19 vaccination. npj Vaccines 2022, 7 (1), 16.
98. Murata, K.; Nakao, N.; Ishiuchi, N.; Fukui, T.; Katsuya, N.; Fukumoto, W.; Oka, H.; Yoshikawa, N.; Nagao, T.; Namera, A.; Kakimoto, N.; Oue, N.; Awai, K.; Yoshimoto, K.; Nagao, M., Four cases of cytokine storm after COVID-19 vaccination: Case report. Frontiers in Immunology 2022, 13.
99. Tiyo, B. T.; Schmitz, G. J. H.; Ortega, M. M.; da Silva, L. T.; de Almeida, A.; Oshiro, T. M.; Duarte, A., What Happens to the Immune System after Vaccination or Recovery from COVID-19? Life (Basel) 2021, 11 (11).
100. 高祖玲; 杨海俊; 熊维建, 维持性血液透析患者微炎症状态的研究进展. 重庆医学 2018, 47 (22), 2963r2965-2968.
101. 黄玉红; 王洁, 慢性肾脏病所致微炎症状态的研究进展. 右江民族医学院学报 2021, 43 (1), 128-133.
102. Moore, J. B.; June, C. H., Cytokine release syndrome in severe COVID-19. Science 2020, 368 (6490), 473-474.
103. Kaur, S.; Bansal, Y.; Kumar, R.; Bansal, G., A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorganic & Medicinal Chemistry 2020, 28 (5), 115327.
104. Fajgenbaum, D. C.; June, C. H., Cytokine storm. New England Journal of Medicine 2020, 383 (23), 2255-2273.
105. Mangalmurti, N.; Hunter, C. A., Cytokine Storms: Understanding COVID-19. Immunity 2020, 53 (1), 19-25.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *