|
Bre, F., Gimenez, J. M., & Fachinotti, V. D. (2018). Prediction of wind pressure coefficients on building surfaces using artificial neural networks. Energy and Buildings, 158, 1429-1441.
Bates, M. (1995). Models of natural language understanding. Proceedings of the National Academy of Sciences, 92(22), 9977-9982.
Boiral, O., Guillaumie, L., Heras‐Saizarbitoria, I., & Tayo Tene, C. V. (2018). Adoption and outcomes of ISO 14001: A systematic review. International Journal of Management Reviews, 20(2), 411-432.
Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
Chollampatt, S., & Ng, H. T. (2018, April). A multilayer convolutional encoder-decoder neural network for grammatical error correction. In Proceedings of the AAAI conference on artificial intelligence (Vol. 32, No. 1).
Chowdhary, K. (2020). Natural language processing. Fundamentals of artificial intelligence, 603-649.
Chojnacka-Komorowska, A., & Kochaniec, S. (2019). Improving the quality control process using the PDCA cycle. Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 63(4).
Chowdhury, G. G., & Chowdhury, S. (2003). Introduction to digital libraries. Facet publishing.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Dale, R. (2020). Natural language generation: The commercial state of the art in 2020. Natural Language Engineering, 26(4), 481-487.
Erauskin‐Tolosa, A., Zubeltzu‐Jaka, E., Heras‐Saizarbitoria, I., & Boiral, O. (2020). ISO 14001, EMAS and environmental performance: A meta‐analysis. Business Strategy and the Environment, 29(3), 1145-1159.
Fonseca, L. (2015). From quality gurus and TQM to ISO 9001: 2015: a review of several quality paths. International Journal for Quality Research (IJQR), 9(1), 167-180.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Jenab, K., Wu, C., & Moslehpour, S. (2018). Design for six sigma: A review. Management Science Letters, 8(1), 1-18.
Khurana, D., Koli, A., Khatter, K., & Singh, S. (2022). Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 1-32.
Kobayashi, M., & Takeda, K. (2000). Information retrieval on the web. ACM Computing Surveys (CSUR), 32(2), 144-173.
Khashabi, D., Chaturvedi, S., Roth, M., Upadhyay, S., & Roth, D. (2018, June). Looking beyond the surface: A challenge set for reading comprehension over multiple sentences. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 252-262).
Kelleher, J. D., & Dobnik, S. (2018). What is not where: the challenge of integrating spatial representations into deep learning architectures. arXiv preprint arXiv:1807.08133.
Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R., Kaiser, L., & Shazeer, N. (2018). Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198.
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J. (2021). Deep learning--based text classification: a comprehensive review. ACM Computing Surveys (CSUR), 54(3), 1-40.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
Peters ME, Neumann M, Iyyer M et al. Deep contextualized word representations, 2018, https://arxiv.org/abs/1802.05365?source=post_pagef2a314075741
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.
Song, K., Tan, X., He, D., Lu, J., Qin, T., & Liu, T. Y. (2018). Double path networks for sequence to sequence learning. arXiv preprint arXiv:1806.04856.
Shezan, F. H., Lao, Y., Peng, M., Wang, X., Sun, M., & Li, P. (2022). NL2GDPR: Automatically develop GDPR compliant android application features from natural language. arXiv preprint arXiv:2208.13361.
Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the turing test (pp. 23-65). Springer, Dordrecht.
Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45.
Wu, S., Liu, S., Sohn, S., Moon, S., Wi, C. I., Juhn, Y., & Liu, H. (2018). Modeling asynchronous event sequences with RNNs. Journal of biomedical informatics, 83, 167-177.
來新陽. (2021). ISO 稽核小組過程指引介紹. 品質月刊, 57(4), 12-14.
吳英志. (2019). 從 ISO 9001 品質管理系統邁向卓越經營模式. 品質月刊, 55(12), 5-9.
周靜幸. (2021). 敏捷內部稽核-風險與價值導向. 內部稽核, (113), 30-35.
陳翠媚, 郭修暐, & 李明賢. (2018). ISO 9001: 2015 [績效評估] 導入的因應對策之個案研究. 品質月刊, 54(10), 35-39.
蔡篤村. (2020). 大數據分析如何翻轉內部稽核. 內部稽核, (108), 32-38.
葉碧華. (2006). 製造業在 ISO9001: 2000 驗證稽核最常見品質管理缺失之分析.
劉睿承. (2020). 公司品質管理政策對經營績效之影響-以台灣輪胎製造業為例.
韓慧林, 王俊堯, & 張宏宇. (2017). ISO9001: 2015 改版實務. 危機管理學刊, 14(2), 11-22.
網路資源 ISO - International Organization for Standardization iT 邦幫忙:https://ithelp.ithome.com.tw/ 菜鳥學院 http://hk.noobyard.com/
|