帳號:guest(3.147.68.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃楓汶
作者(外文):Huang, Feng-Wen
論文名稱(中文):模擬分析於具有整備與批量的半導體蝕刻派工製程
論文名稱(外文):Simulation analysis of dispatching at semiconductor etching process with setup time and batch production
指導教授(中文):林則孟
指導教授(外文):Lin, James T.
口試委員(中文):陳勝一
陳子立
口試委員(外文):Chen, Sheng-I
Chen, Zi Li
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系碩士在職專班
學號:110036506
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:80
中文關鍵詞:蝕刻製程整備時間派工法則CLIP
外文關鍵詞:Etching processSetup timeDispatching rulesCLIP
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在半導體生產過程中,中後段的蝕刻製程扮演著重要的角色,連接上游的黃光製程並為下游的成品檢驗作好前置準備。然而,由於資源有限,新建的工廠往往無法投入昂貴的中央供酸系統以供應蝕刻機台,取而代之的是透過人工進行換酸整備以保持機台運作。在此情況下,整備時間的策略規劃成為了確保蝕刻機台能加工運作的關鍵。在高變異性的需求環境中,如何確立有效的整備時間觸發策略以最大化達交率這一生產績效指標,是半導體工廠每日面臨的挑戰。
本研究主要針對蝕刻加工站的生產策略進行探討,該策略分為兩部分,即蝕刻整備換酸和蝕刻派工。在整備策略方面,除了考量蝕刻液的壽命限制和批量設計,同時也兼顧等候區批次的延遲確認,從而提出前瞻性的批量與批次延遲確認以觸發整備,而派工策略則是在考量下一次觸發的優先性前提下,採用最短加工時間優先的方式。這兩階段的策略結合應用於蝕刻加工站,並考量了生產系統中的各種特性與限制,如整備時間與批量控管、產品重入流、急件批和重工批的優先加工等。由於生產系統中機台的加工時間具有隨機性,我們利用系統模擬軟體(Flexsim)建立了一個模擬模式進行重複模擬,以估計在不同在製品水準下的生產績效。
透過模擬分析的結果,本研究提出的蝕刻延遲優先派工法則(Etching Delay First Dispatching, EDFD)在應用於蝕刻加工站時,能在高來到率組合的背景下,提高系統達交率8%,整備次數減少6%。
In semiconductor production, the etching process is crucial, linking upstream photolithography and preparing for downstream inspections. Given resource limitations, new factories often resort to manual acid replacement for etching machine setup times. Thus, the strategic planning of setup times is essential for enabling operation. Formulating an effective setup times triggering strategy to maximize the delivery rate is a daily challenge.
This research investigates the production strategy at the etching station, focusing on etching setup times acid replacement and dispatching. The strategy considers the life limit of etching liquid, batch design, and batch delay confirmation, thereby proposing a forward-looking batch and batch delay confirmation for setup times triggering. Priority is given to the shortest processing time in dispatching. The approach integrates these elements, considering characteristics and constraints of the production system, such as batch control and priority processing of re-entered or urgent batches. The system's randomness is addressed by using the Flexsim software for simulation and production performance CLIP% estimation.
The results suggest that the proposed Etching Delay First Dispatching (EDFD) can improve the delivery rate by 8% and reduce setup times by 6% when applied to the etching station under high arrival rate conditions.
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍與限制 3
1.4 研究流程與架構 4
第二章 文獻回顧 6
2.1 蝕刻加工流程 6
2.1.1 蝕刻製程原理介紹 6
2.1.2 蝕刻加工流程介紹 7
2.1.3 蝕刻加工特性 7
2.2 整備時間生產排程之定義與特性 10
2.2.1 整備時間生產排程的概念與定義 10
2.2.2 整備時間生產排程的策略與分法 10
2.2.3 蝕刻整備時間與其他加工站點存在差異性的比較 11
2.3 批量加工之定義與相關文獻 12
2.3.1 批量派工法則 13
2.4 途程重入流定義與相關文獻 17
2.4.1 重入流現象的定義及其在半導體製程中的重要性 17
2.4.2 重入流對生產排程的影響 18
2.4.3 重入流排程問題的研究方法和策略 18
2.5 派工法則與與生產績效指標之定義與相關文獻 20
2.5.1 派工法則的定義與分類 20
2.5.2 生產績效指標的定義與類型 22
2.6 以交期績效指標為主相關文獻回顧 28
第三章 整備時間含批次延遲控管應用於蝕刻加工 37
3.1 問題定義 37
3.1.1 預期目標 39
3.1.2 問題假設、系統範圍及細緻度 40
3.2 蝕刻延遲優先派工法則 44
3.2.1 Etching Delay First Dispatching, EDFD簡介 44
3.2.2 EDFD派工法則說明 44
3.3 模擬方法論 46
3.3.1 研究方法架構 47
3.3.2 概念性模型 48
3.3.3 整備時間觸發策略設計比較 – 現況 49
3.3.4 整備時間觸發策略設計比較 – 本研究設計 50
3.3.5 資料蒐集與分析 50
3.3.6 定義因子與水準及方案建立 57
3.3.7 評估模式建立與績效指標說明 58
3.3.8 模式構建 60
3.3.9 模式驗證 68
3.3.10 模式確認 68
第四章 模擬實驗與結果分析 69
4.1 實驗假設 69
4.2 實驗結果與分析 69
4.2.1 達交率CLIP%比較 69
4.2.2 整備次數Topup times比較 71
4.2.3 產出Output比較 73
4.2.4 多因子ANOVA (來到組合與派工對於達交率的影響) 74
4.2.5 多因子ANOVA (來到組合與派工對於整備次數的影響) 75
第五章 結論與建議 77
5.1 結論 77
5.2 建議 78
參考文獻 79
1.林則孟(2001),系統模擬理論與應用,滄海書局
2.林則孟(2022),系統模擬System Simulation,清華大學工業工程系統模擬課程講義
3.陳勝一(2007),批量加工之排程問題-半導體廠爐管機台為例,清華大學工業工程與工程管理研究所碩士論文
4.Chen, Y. Y., Lin, J. T., & Chen, T. L. (2011). A two-phase dynamic dispatching approach to semiconductor wafer testing. Robotics and Computer-Integrated Manufacturing, 27(5), 889-901.
5.Fowler, J. W., Phillips, D. T., & Hogg, G. L. (1992). Real-time control of multiproduct bulk-service semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 5(2), 158-163.
6.Glassey, C. R., & Weng, W. W. (1991). Dynamic batching heuristic for simultaneous processing. IEEE transactions on semiconductor manufacturing, 4(2), 77-82.
7.Gupta, A. K., & Sivakumar, A. I. (2006). Optimization of due-date objectives in scheduling semiconductor batch manufacturing. International Journal of Machine Tools and Manufacture, 46(12-13), 1671-1679.
8.Neuts, M. F. (1967). A general class of bulk queues with Poisson input. The Annals of Mathematical Statistics, 38(3), 759-770.
9.Park, Y., Kim, S., & Jun, C. H. (2002). Mean value analysis of re-entrant line with batch machines and multi-class jobs. Computers & Operations Research, 29(8), 1009-1024.
10.Robinson, J. K., Fowler, J. W., & Bard, J. F. (1995). The use of upstream and downstream information in scheduling semiconductor batch operations. International Journal of Production Research, 33(7), 1849-1869.
11.Seo, J. C., Chung, Y. H., & Park, S. C. (2015). ON-TIME DELIVERY ACHIEVEMENT OF HIGH PRIORITY ORDERS IN ORDER-DRIVEN FABRICATIONS. International Journal of Simulation Modelling (IJSIMM), 14(3).
12.Shin, H. J. (2015). A dispatching algorithm considering process quality and due dates: an application for re-entrant production lines. The International Journal of Advanced Manufacturing Technology, 77, 249-259.
13.Van der Zee, D. J., van Harten, A., & Schuur, P. C. (1996). Dynamic Job Assignment Heuristics For Multi-server Batch Operations: A Cost-based Approach.
14.Weng, W. W., & Leachman, R. C. (1993). An improved methodology for real-time production decisions at batch-process work stations. IEEE transactions on semiconductor manufacturing, 6(3), 219-225.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *