帳號:guest(18.219.199.112)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭紫涵
作者(外文):Kuo, Tzu-Han
論文名稱(中文):基於適配體的電雙層 (EDL) 延伸閘極 FET 生物感測器電信號的增強研究以實現對鎘離子高靈敏度檢測
論文名稱(外文):Electrical signal enhancement of Aptamer-Based Electric-Double -Layer (EDL) Extended-gated FETs for Highly Sensitive Detection of Cadmium ions
指導教授(中文):王玉麟
指導教授(外文):Wang, Yu-Lin
口試委員(中文):陳致真
陳榮治
范育睿
口試委員(外文):Chen, Chih-Chen
Chen, Jung-Chih
Fan, Yu-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:110035520
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:91
中文關鍵詞:適配體電雙層屏蔽效應場效電晶體感測器鎘離子
外文關鍵詞:AptamerElectric Double LayerScreening effectFET sensorCadmium ion
相關次數:
  • 推薦推薦:0
  • 點閱點閱:142
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鎘離子( Cd (II))為劇毒的重金屬污染物,它不但具有長生物半衰期和強蓄積性,即使在低劑量攝入下也可能對健康造成不可逆的危害。常見的重金屬檢測方式如光譜法及質譜法。但這些技術成本高、耗時長且操作繁複,因此無法達到及時精準檢測的需求。
在此研究中,我們提出了一種基於適配體的電雙層 (EDL) 延伸閘極場效電晶體感測器檢測鎘離子(Cd (II)),適配體藉由Au-S鍵自組裝在金電極表面。由於適配體對鎘離子有特異性結合,添加 Cd (II) 後,結合適配體形成一莖環結構,而產生的閘極電壓變化,再透過場效電晶體的跨導 (transconductance) 來放大電訊號。此感測器對Cd (II) 的線性檢測範圍為10 pM-10 uM(R2=0.99001)以及提供出色的檢測極限為0.325 pM (LOD)。為了增強電信號,研究了溫度對結構變化的影響,透過加熱誘導,使它實現了 10 秒的快速響應。 此外,該感測器在存在其他重金屬時表現出高選擇性。除此之外,它還可以重複使用,而不會出現顯著的信號衰減。
目前,由於檢測真實樣本中的酸鹼值、溶液導電度、高離子濃度導致的屏蔽效應等因素,將對測量結果產生影響,進而增加了測量真實樣本的挑戰。因此,我們提出了一種替代高離子強度溶液,具有較低的電荷屏蔽效應,以提供超出德拜長度的範圍內有更好的檢測方式。牛血清蛋白 (BSA) 可用於增強溶液導電度和避免屏蔽效應導致的訊號減弱。此方法攜帶方便、響應時間短、操作簡單、靈敏度高、等優點。此感測器可直接在真實樣品中成功檢測鎘離子濃度,並且與 ICP-MS的結果類似。
Cadmium ions (Cd (II)) are highly toxic heavy metal pollutants that have a prolonged biological half-life and exhibit bioaccumulation. Even at low doses, irreversible damage to health may occur. Common methods of heavy metal detection include spectrometry and mass spectrometry. Nevertheless, these methods are very costly, time-consuming, and complicated. Thus, they are unable to meet the demand for timely and accurate testing.
In this research, we aim to develop an aptamer-based extended-gate field-effect transistor (FET) sensor to detect cadmium ions. The aptamer is self-assembled on a gold electrode with an Au-S bond. Due to the specific affinity of the aptamer for cadmium ions, it will form a stem-ring structure upon binding with Cd (II). The change in structure produces a change in Vg, which consequently amplifies the signal via the transconductance of the FETs.
The sensor shows a linear range of 10 pM to 10 μM (R2 = 0.99001) and provides excellent detection limits of 0.325 pM (LOD). In order to enhance the electrical signal, temperature was investigated, and heat induction achieved a rapid response of 10 seconds. In addition, it shows high selectivity even in the interference of other heavy metals also can be reusable, and has no significant signal degradation.
So far, real sample detection has posed challenges such as pH values, solution conductivity, and screening effects. Therefore, we propose an alternative high ion strength solution with low charge screening to provide better detection beyond the Debye length. Bovine serum albumin (BSA) can be used to enhance solution conductivity and avoid signal attenuation due to screening effects. This method has convenient portability, short detection time, high sensitivity, and simple operation. It successfully detected cadmium ion concentrations directly in real samples, and the results were similar to those of ICP-MS.
摘要 i
Abstract ii
致謝 iii
Table of contents iv
List of figures vi
List of Tables x
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Project Goal 2
Chapter 2 Literature Review 4
2.1 The danger of cadmium ions to the human health 4
2.2 Different Aptamer-based Sensor Methods for Cadmium Ion Detection 5
2.3 Field effect transistor biomedical sensor 14
2.4 Aptamers as Biological Receptors 15
2.5 Mechanism of aptamer binding to cadmium ions 16
2.6 Electric Double Layer Structure (EDL) and Charge Screening Effect 19
Chapter 3 Experimental Design and Preparation 23
3.1 Experimental method 23
3.1.1 Experimental device 24
3.1.2 Continuous addition method 26
3.2 Structure of Extended Gate FET 27
3.3 Application of electric double layer (EDL) 31
3.4 Selection of cadmium aptamer sequences 33
3.5 Preparation of test solution 35
3.6 Aptamer-modified electrodes 36
3.6.1 Surface Cleaning and Modification 36
3.6.2 TCEP 37
3.6.3 Aptamer immobilization 37
3.6.4 Cadmium ion elution process 38
3.7 Electrical Signal Measurement 39
3.8 Fluorescence measurement 40
Chapter 4 Results and Discussion 42
4.1 Electrical characteristics of Metal Oxide Semiconductor Field Effect Transistor 42
4.2 Chip Testing. 45
4.3 The challenge of real-sample detection 46
4.3.1 The effect of solution conductivity 46
4.3.2 Effect of pH 48
4.3.3 Effect of temperature 49
4.3.4 Optimization of adaptor immobilization conditions 58
4.4 Sensitivity 59
4.5 Blind test 65
4.6 Selectivity 66
4.7 Repeatability 70
4.8 Chip Storage 70
4.9 Detection results of real samples 72
4.9.1 Sample preparation 72
4.9.2 A new method to overcome the screening effect 76
4.9.3 Detection method 81
4.9.4 Results of testing real samples 82
Chapter 5 Summary 85
Chapter 6 Future Work 87
Chapter 7 Reference 88

[1] Li, Xiao-Xia, et al. "A fractal modification of the surface coverage model for an electrochemical arsenic sensor." Electrochimica Acta 296 (2019): 491-493.
[2] Cheng, Tanyu, et al. "A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell." Journal of the American Chemical Society 130.48 (2008): 16160-16161.
[3] Hung, Sheng-Chun, Chih-Cheng Lu, and Lin-Chien Chen. "A Highly Selective and Interference-Resistive Opto-Mechatronic Sensor for Fast Detection of Nickel Ions." IEEE Sensors Journal21.21 (2021): 23949-23956.
[4] Hung, Sheng-Chun, Chih-Cheng Lu, and Yu-Ting Wu. "An investigation on design and characterization of a highly selective LED optical sensor for copper ions in aqueous solutions." Sensors 21.4 (2021): 1099.
[5] Huang, Mei-Rong, Yong-Bo Ding, and Xin-Gui Li. "Lead-ion potentiometric sensor based on electrically conducting microparticles of sulfonic phenylenediamine copolymer." Analyst138.13 (2013): 3820-3829.
[6] El-Safty, Sherif A., and M. A. Shenashen. "Mercury-ion optical sensors." TrAC Trends in Analytical Chemistry 38 (2012): 98-115.
[7] Toxicity of cadmium in tobacco smoke: Protection by antioxidants and chelating resins,Bachelet, Maria and Pinot, Franoise and Polla, Rachel I. and Franois, Dominique and Richard, Marie-Jeanne and Vayssier-Taussat, Muriel and Polla, Barbara S. (2002) Free Radical Research, 36 (1), pp. 99 – 106
[8] Sekhon, S.S., Park, GY., Park, DY. et al. Aptasensors for Pesticide Detection. Toxicol. Environ. Health Sci. 10, 229–236 (2018)
[9] Nardi, Elene P., et al. "The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples." Food Chemistry 112.3 (2009): 727-732.
[10] T.Y. Chiu, P.H. Chen, C.L. Chang, D.M. Yang Live cell dynamic sensing of Cd (II) with a FRET-based indicator PLoS One, 8 (2013), p. e65853
[11] Berridge, M., Bootman, M. & Roderick, H. Calcium signalling: dynamics, homeostasis and remodelling.Nat Rev Mol Cell Biol 4, 517–529 (2003).
[12] Vyskocˇil, Frantisˇek, Norbert Krˇízˇ, and Jan Buresˇ. "Potassium-selective microelectrodes used for measuring the extracellular brain potassium during spreading depression and anoxic depolarization in rats." Brain research 39.1 (1972): 255-259.
[13] Sempionatto, Juliane R., et al. "Skin‐worn Soft Microfluidic Potentiometric Detection System." Electroanalysis 31.2 (2019): 239-245.
[14] Prodi, Luca, et al. "A fluorescent sensor for magnesium ions." Tetrahedron letters 39.31 (1998): 5451-5454.
[15] Safavi, A., and H. Abdollahi. "Simultaneous kinetic determination of Fe (III) and Fe (II) by H-point standard addition method." Talanta 56.4 (2002): 699-704.
[16] Komatsu, Kensuke, et al. "Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc." Journal of the American Chemical Society129.44 (2007): 13447-13454.
[17] Pyle, Steven M., et al. "Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil." Environmental science & technology 30.1 (1995): 204-213.
[18] Huang, Kai, et al. "Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd (II) ions." Journal of hazardous materials 333 (2017): 137-143.
[19] Shaban, Samy M., and Dong-Hwan Kim. "Recent advances in aptamer sensors." Sensors 21.3 (2021): 979.
[20] Hongyan Wang, Hui Cheng, Jine Wang, Lijun Xu, Hongxia Chen, Renjun Pei,Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II),Talanta,Volume 154,2016,Pages 498-503.
[21] Luan, Yunxia, et al. "A label-free aptamer-based fluorescent assay for cadmium detection." Applied Sciences 6.12 (2016): 432.
[22] Zhou, Bin, et al. "Label-free fluorescent aptasensor of Cd (II) detection based on the conformational switching of aptamer probe and SYBR green I." Microchemical Journal 144 (2019): 377-382.Electroanalytical Chemistry 803 (2017): 89-94.
[23] Xu, Lu, et al. "Highly selective, aptamer-based, ultrasensitive nanogold colorimetric smartphone readout for detection of Cd (II)." Molecules 24.15 (2019): 2745
[24] Wu, Yuangen, et al. "Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles." Analyst 139.6 (2014): 1550-1561.
[25] Gan, Ying, et al. "In-situ detection of cadmium with aptamer functionalized gold nanoparticles based on smartphone-based colorimetric system." Talanta 208 (2020): 120231.
[26] Wang, Hongyan, et al. "Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd (II)." Talanta 154 (2016): 498-503.
[27] Vu, Cao-An, and Wen-Yih Chen. "Predicting prospects of aptamers in field-effect transistor biosensors." Molecules 25.3 (2020): 680.
[28] Leila Farzin, Mojtaba Shamsipur, Shahab Sheibani, A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals ,Talanta Volume 174,201 7,Pages 619-627.
[29] Eric Stern, Robin Wagner, Fred J. Sigworth, Ronald Breaker, Tarek M. Fahmy, and Mark A. Reed” Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors” Nano Letters 2007 7 (11), 3405-3409
[30] Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the Debye Screening Length on Nanowire Field Effect Transistor Sensors. Nano Lett. 2007, 7, 3405–3409.
[31] Zhang, G.-J.; Zhang, G.; Chua, J.H.; Chee, R.-E.; Wong, E.H.; Agarwal, A.; Buddharaju, K.D.; Singh, N.; Gao, Z.; Balasubramanian, N. DNA Sensing by Silicon Nanowire: Charge Layer Distance Dependence. Nano Lett. 2008, 8, 1066–1070.
[32] De Vico, L.; Iversen, L.; Sorensen, M.H.; Brandbyge, M.; Nygard, J.; Martinez, K.L.; Jensen, J.H. Predicting and Rationalizing the Effect of Surface Charge Distribution and Orientation on Nano-wire Based FET Bio-sensors. Nanoscale 2011, 3, 2635–2640.
[33] Qiu, X.-Y.; Li, K.; Li, X.-Q.; Li, X.-T. The Inhibitory Effects of Nifedipine on Outward Voltage-Gated Potassium Currents in Mouse Neuroblastoma N2A Cells. Pharmacol. Rep. 2016, 68 (3), 631– 637.
[34] Zamani M, Robson JM, Fan A, Bono MS Jr, Furst AL, Klapperich CM. Electrochemical Strategy for Low-Cost Viral Detection. ACS Cent Sci. 2021 Jun 23;7(6):963-972.
[35] Rajan, N.K.; Routenberg, D.A.; Reed, M.A. Optimal Signal-To-Noise Ratio for Silicon Nanowire Biochemical Sensors. Appl. Phys. Lett. 2011, 98, 264107.
[36] Mannik, J.; Heller, I.; Janssens, A.M.; Lemay, S.G.; Dekker, C. Charge Noise in Liquid-Gated Single-Wall Carbon Nanotube Transistors. Nano Lett. 2008, 8, 685–688.
[37] Rosenstein, J.; Sorgenfrei, S.; Shepard, K.L. Noise and bandwidth performance of single-molecule biosensors. In Proceedings of the 2011 IEEE Custom Integrated Circuits Conference, San Jose, CA, USA, 19–21 September 2011.
[38] Sharf, T.; Kevek, J.W.; DeBorde, T.; Wardini, J.L.; Minot, E.D. Origins of Charge Noise in Carbon Nanotube Field-Effect Transistor Biosensors. Nano Lett. 2012, 12, 6380–6384.
[39] Mattmann, M.; Helbling, T.; Durrer, L.; Roman, C.; Pohle, R.; Fleischer, M.; Hierold, C. Hysteresis Reduction and Measurement Range Enhancement of Carbon Nanotube Based NO2 Gas Sensors by Pulsed Gate Voltages. In Proceedings of the Eurosensors XXIII Conference, Lausanne, Switzerland, 6–9 September 2009; Curran: New York, NY, USA.
[40] Wong, Elicia LS, Edith Chow, and J. Justin Gooding. "The electrochemical detection of cadmium using surface-immobilized DNA." Electrochemistry communications 9.4 (2007): 845-849.
[41] Babkina, S. S., and N. A. Ulakhovich. "Complexing of heavy metals with DNA and new affinity method of their determination based on amperometric DNA-based biosensor." Analytical chemistry 77.17 (2005): 5678-5685.
[42] Xue, Yu, et al. "Label-free and regenerable aptasensor for real-time detection of cadmium (II) by dual polarization interferometry." Analytical Chemistry 92.14 (2020): 10007-10015.
[43] Namhil, Zahra Ghobaei, et al. "A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects." Physical Chemistry Chemical Physics 21.2 (2019): 681-691.
[44] C. Laborde, F. Pittino, H. A. Verhoeven, S. G. Lemay, L. Selmi, et al., "Real-timeimaging of microparticles and living cells with CMOS nanocapacitor arrays" Nature Nanotechnology, vol. 10, pp. 791–795, 2015.
[45] Indu Sarangadharan, Anil Kumar Pulikkathodi, Chia-Ho Chu, Yen-Wen Chen, Abiral Regmi, Pei-Chi Chen, Chen-Pin Hsu and Yu-Lin Wang, "Review—High Field Modulated FET Biosensors for Biomedical Applications" ECS Journal of Solid State Science Technology, vol. 7, issue 7, Q3032-3042, 2018.
[46] Oberhaus, Franziska V., Dieter Frense, and Dieter Beckmann. "Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: A review." Biosensors 10.5 (2020): 45.
[47] Titoiu, Ana Maria, et al. "Detection of allergenic lysozyme during winemaking with an electrochemical aptasensor." Electroanalysis 31.11 (2019): 2262-2273.
[48] Youn, Hyungjun, et al. "A Novel Eosinophilia Diagnostics Using Label‐free Impedimetric Aptasensor for Soluble Interleukin‐5 Receptor Alpha." Electroanalysis 30.11 (2018): 2597-2603.
[49] Jolly, Pawan, et al. "Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker." Sensors and Actuators B: Chemical 251 (2017): 637-643.
[50] Zhad, Hamid R. Lotfi Zadeh, Yamil M. Rodríguez Torres, and Rebecca Y. Lai. "A reagentless and reusable electrochemical aptamer-based sensor for rapid detection of Cd (II)." Journal of Electroanalytical Chemistry 803 (2017): 89-94.
[51] E Ferapontova, Elena. "Electrochemical indicators for DNA electroanalysis." Current Analytical Chemistry 7.1 (2011): 51-62
[52] Cao, Xiyue, et al. "A new dual-signaling electrochemical aptasensor with the integration of “signal on/off” and “labeling/label-free” strategies." Sensors and Actuators B: Chemical 239 (2017): 166-171
[53] Taghdisi, Seyed Mohammad, et al. "A novel electrochemical aptasensor for carcinoembryonic antigen detection based on target‐induced bridge assembly." Electroanalysis 30.8 (2018): 1734-1739.
[54] Dirks, Robert M., and Niles A. Pierce. "Triggered amplification by hybridization chain reaction." Proceedings of the National Academy of Sciences 101.43 (2004): 15275-15278.
[55] Ding, Shaohua, et al. "A novel mode of DNA assembly at the electrode and its application to protein quantification." Analytica Chimica Acta 1029 (2018): 24-29.
[56] Wang, Qingqing, et al. "Label-free aptamer biosensor for thrombin detection based on functionalized graphene nanocomposites." Talanta 141 (2015): 247-252.
[57] Jiang, Ling, et al. "Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A." Analytica Chimica Acta 806 (2014): 128-135.
[58] Sang, L. C., Vinu, A., & Coppens, M. O. (2011). General description of the adsorption of proteins at their iso-electric point in nanoporous materials. Langmuir, 27(22), 13828-13837.
[59] Wang, R., Zhou, X., Zhu, X., Yang, C., Liu, L., & Shi, H. (2017). Isoelectric bovine serum albumin: robust blocking agent for enhanced performance in optical-fiber based DNA sensing. ACS sensors, 2(2), 257-262.
[60] Reimhult, K., Petersson, K., & Krozer, A. (2008). QCM-D analysis of the performance of blocking agents on gold and polystyrene surfaces. Langmuir, 24(16), 8695-8700.
[61] Muhammad, Irfan, et al. "Exploration of the Interaction of Cadmium and Aptamer by Molecular Simulation and Development of Sensitive Capillary Zone Electrophoresis-Based Aptasensor." Journal of Chemical Information and Modeling 63.9 (2023): 2783-2793.
[62] Sakamoto, Taiichi, Eric Ennifar, and Yoshikazu Nakamura. "Thermodynamic study of aptamers binding to their target proteins." Biochimie 145 (2018): 91-97.
[63] Li, Yu, et al. "Highly sensitive label-free electrochemical aptasensor based on screen-printed electrode for detection of cadmium (II) ions." Journal of The Electrochemical Society 166.6 (2019): B449.
[64] Dawood, Nusaibah Esmael. "Thermodynamic and Kinetic Analysis of Aptamer-Ligand Interactions Using Isothermal Titration Calorimetry." (2021).
[65] Alex, Serge, and Paul Dupuis. "FT-IR and Raman investigation of cadmium binding by DNA." Inorganica Chimica Acta 157.2 (1989): 271-281.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *