帳號:guest(3.135.212.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐智湞
作者(外文):Hsu, Chih-Chen
論文名稱(中文):應用於擴增實境眼鏡之壓電式雙軸微掃描面鏡設計與實現
論文名稱(外文):Design and Realization of Bi-axial Piezoelectric Micro Scanning Mirror for AR Glasses Applications
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-leun
口試委員(中文):賴梅鳳
吳名清
口試委員(外文):Lai, Mei-Feng
Wu, Ming-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:110035501
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:118
中文關鍵詞:微機電微掃描面鏡壓電致動擴增實境智慧眼鏡雷射掃描成像利薩茹圖形
外文關鍵詞:MEMSScanning mirrorPiezoelectric actuationAR smart glassesLaser beam scanningLissajous pattern
相關次數:
  • 推薦推薦:0
  • 點閱點閱:287
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著元宇宙的概念被提出後,虛擬實境和擴增實境的各項應用開始成為大眾的焦點,而擴增實境的智慧眼鏡更是一個新穎的商品,在未來極具發展潛力,其中的關鍵成像技術便是微機電的掃描面鏡搭配雷射光束的掃描系統。本研究目標為實現一應用於擴增實境眼鏡之壓電式雙軸微掃描面鏡,透過特殊的微掃描面鏡結構設計,使掃描成像的畫面不扭曲,並達到一定的光學掃描角度以及解析度。本研究之元件能夠在沒有真空封裝的情況下,X軸於40Vpp的電壓下達到59.7度的光學掃描角,Y軸於26Vpp的電壓下可達到7.8度的光學掃描角;雙軸同時驅動時,可掃出一個利薩茹的掃描圖形,且成像四邊皆平直方正。最後進行元件的失效分析,針對雙軸微掃描面鏡之走線分佈提出分析結果,並且計算壓電材料之斷裂應力,用以提供後續設計上的一些相關準則。
As the concept of the metaverse has been prevailed in recent years, a variety of applications of virtual reality (VR) and augmented reality (AR) have gained lots of interest. AR glasses have particularly emerged as a novel product with promising potential in the future. The corner stone of projection technology consists of micro-electro-mechanical system (MEMS) scanning mirror and laser beam projection system. This study aims to realize a piezoelectric bi-axial MEMS scanning mirror for AR glasses, and achieve non-distortion scanning image by novel structural design. The device developed in this study can achieve a horizontal scanning angle of 59.7° when driven by 40Vpp sinusoidal-signal (6.6 kHz) and vertical scanning angle of 7.8° when driven by 26Vpp sinusoidal-signal (16 kHz), while there's no vacuum packaging needed. Besides, the Lissajous scanning pattern with straight edges could be successfully achieved. Finally, the failure modes of the device were also analyzed to summarize relative design guidelines for future structural enhancement.
摘要 I
Abstract II
誌謝 III
目錄 X
圖目錄 XIV
表目錄 XIX
第一章 緒論 1
1-1 前言 1
1-2 微掃描面鏡文獻回顧 4
1-2-1 靜電式微掃描面鏡 6
1-2-2 電磁式微掃描面鏡 7
1-2-3 壓電式微掃描面鏡 9
1-3 研究動機 13
1-4 全文架構 15
第二章 掃描軌跡與雙軸結構探討 25
2-1掃描軌跡 25
2-1-1 循序掃描軌跡 25
2-1-2 利薩茹掃描軌跡 28
2-1-3 閃爍現象 30
2-2 成像扭曲探討 31
2-3 雙軸微掃描面鏡結構探討 32
2-3-1 無環架之雙軸微掃描面鏡 32
2-3-2 有環架之雙軸微掃描面鏡 34
2-4 小結 36
第三章 設計概念 50
3-1 壓電效應與材料選用 50
3-2 結構設計 53
3-2-1 元件設計總覽 54
3-2-2 中間環架設計 55
3-2-3 漸縮式致動器結構設計 57
3-2-4 外軸致動器設計 59
3-3 有限單元法模擬 61
3-4 小結 64
第四章 製程與量測結果 74
4-1 製程流程與結果 74
4-2 元件頻率響應與模態 76
4-3 光學量測 77
4-3-1 光學掃描量測 77
4-3-2 利薩茹圖形量測 78
4-4 感測訊號量測 79
4-5 元件失效分析 81
4-5-1 顯微鏡觀察 81
4-5-2 EDS元素分析 82
4-5-3 有限單元法模擬 82
4-5-4 斷裂應力分析 83
4-6 小結 86
第五章 結論與未來工作 100
5-1結論 100
5-2未來工作 101
5-2-1感測電極設計 101
5-2-2 結構設計之應力分析 102
5-2-3 閃爍現象改善 102
參考文獻 104
附錄A—元件設計之改善與初步驗證 110
A-1三環結構之優化 110
A-2感測電極之設計與驗證 111
A-2-1實驗元件之內軸設計概念 112
A-2-2實驗元件之內軸量測結果 112
A-2-3實驗元件之外軸設計概念 113
A-2-4實驗元件之外軸量測結果 114
A-3小結 114
[1] YOLE Developpement, [Online]. Available: http://www.yole.fr/.
[2] M. Robberto, A. Cimatti, A. Jacobsen, F. Zamkotsian, and F. Zerbi, "Applications of DMDs for astrophysical research," in Proc.SPIE, 2009.
[3] Digikey, [Online]. Available: https://www.digikey.com/en/product-highlight/t/texas-instruments/dlp-technology.
[4] Texas Instruments, [Online]. Available: https://www.ti.com/dlp-chip/overview.html
[5] Microsoft HoloLens, [Online]. Available:https://www.ti.com/dlp-chip/overview.html
[6] K. E. Petersen, "Silicon Torsional Scanning Mirror," IBM Journal of Research and Development, vol. 24, no. 5, pp. 631-637, 1980.
[7] L. Y. Lin, S. S. Lee, K. S. J. Pister, and M. C. Wu, "Micro-machined three-dimensional micro-optics for integrated free-space optical system," IEEE Photonics Technology Letters, vol. 6, no. 12, pp. 1445-1447, 1994.
[8] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, "Realization of novel monolithic free-space optical disk pickup heads by surface micromachining," Opt. Lett., vol. 21, no. 2, pp. 155-157, 1996.
[9] L. Y. Lin, J. L. Shen, S. S. Lee, and M. C. Wu, "Surface-micromachined micro-XYZ stages for free-space microoptical bench," IEEE Photonics Technology Letters, vol. 9, no. 3, pp. 345-347, 1997.
[10] F. Li, L. Shi-Sheng, and M. C. Wu, "Self-assembled micro-XYZ stages for optical scanning and alignment," in Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting, 10-13 Nov. 1997 1997, vol. 1, pp. 266-267 vol.1
[11] M. Wu and W. Fang, "A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS," Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp. 260-265, 2006.
[12] M. Wu, H. Lin, and W. Fang, "A Poly-Si-Based Vertical Comb-Drive Two-Axis Gimbaled Scanner for Optical Applications," IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2111-2113, 2006.
[13] N. Asada, H. Matsuki, K. Minami, and M. Esashi, "Silicon micromachined two-dimensional galvano optical scanner," IEEE Transactions on Magnetics, vol. 30, no. 6, pp. 4647-4649, 1994.
[14] H. Yang and W. Fang, "A Novel Coil-Less Lorentz Force 2D Scanning Mirror Using Eddy Current," International Conference on Micro Electro Mechanical Systems, Istanbul, Turkey, January, 2006, pp. 32-35.
[15] A. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, "Two-axis electromagnetic microscanner for high resolution displays," Journal of Microelectromechanical Systems, vol. 15, no. 4, pp. 786-794, 2006.
[16] J. Yang, M. Zhang, C. Si, G. Han, J. Ning and F. Yang, "A T-Shape Aluminum Nitride Thin-Film Piezoelectric MEMS Resonant Accelerometer," Journal of Microelectromechanical Systems, vol. 28, no. 5, pp. 776-781, 2019.
[17] 王紹達,“單壓電層懸臂式麥克風之設計與分析” 國立清華大學碩士論文,2021.
[18] 鄭旭翔,“藉由彈簧、振膜與電極設計提升壓電式微機電揚聲器之表現” 國立清華大學碩士論文,2018.
[19] 鄭皓謙,“具備大角度與反射面積壓電式微掃描面鏡之設計與實現” 國立清華大學碩士論文,2022.
[20] A. Schroth, C. Lee, S. Matsumoto, M. Tanaka, and R. Maeda, "Application of sol-gel deposited thin PZT film for actuation of 1D and 2D scanners," International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems, Heidelberg, Germany, January, 1998, pp. 402-407.
[21] F. Filhol, E. Defaÿ, C. Divoux, C. Zinck, and M. T. Delaye, "Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning," Sensors and Actuators A: Physical, vol. 123-124, pp. 483-489, 2005.
[22] T. Masanao, A. Masahiro, Y. Yoshiaki, and T. Hiroshi, "A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator," International Conference on Micro Electro Mechanical Systems, Hyogo, Japan, January, 2007, pp. 699-702.
[23] U. Baran, D. Brown, S. Holmstrom, D. Balma, W. O. Davis and P. Muralt, "Resonant PZT MEMS Scanner for High-Resolution Displays," Journal of Microelectromechanical Systems, vol. 21, no. 6, pp. 1303-1310, 2012.
[24] T. Ishida, K. Komaki, T. Harigai, R. Takayama, and T. Katayama, "Wide Angle and High Frequency (>120 Degrees@ 10 KHZ/90 Degrees@ 30 KHZ) Resonant Si-MEMS Mirror Using a Novel Tuning-Fork Driving," in 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), 18-22 Jan. 2020 2020, pp. 527-531
[25] " MEMS ScanAR technology enables fast development of high-performance Augmented Reality glasses through a reference design and a manufacturing ecosystem," STmicroelectronics, [Online]. Available: https://www.st.com/content/st_com/en/about/innovation---technology/laser-beam-scanning.html.
[26] N. Boni et al., "Piezoelectric MEMS mirrors for the next generation of small form factor AR glasses," in Proc.SPIE, 2022
[27] North, [Online]. Available:https://www.bynorth.com/
[28] G. Ran et al., "The return of the interlace," in Proc.SPIE, 2022, vol. 11931, p. 119310
[29] H. Urey, D. Wine, and T. Osbornc, "Optical performance requirements for MEMS-scanner based microdisplays," MOEMS and Miniaturized Systems, Santa Clara, CA, August 2000, pp. 176-185.
[30] U. Hofmann, M. Oldsen, H.-J. Quenzer, J. Janes, M. Heller and M. Weiss, "Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays," MOEMS and Miniaturized Systems VII, San Jose, California, 2008, pp. 60-74.
[31] S. Gu-Stoppel, J. Janes, H. J. Quenzer, U. Hofmann, and W. Benecke, "Two-dimensional scanning using two single-axis low-voltage PZT resonant micromirrors," in Proc.SPIE, 2014, vol. 8977, p. 897706
[32] K. Hwang, Y.-H. Seo, J. Ahn, P. Kim, and K.-H. Jeong, "Frequency selection rule for high definition and high frame rate Lissajous scanning," Scientific Reports, vol. 7, no. 1, pp. 14075, 2017
[33] Y.-H. Seo, K. Hwang, H. Kim, and K.-H. Jeong, "Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns," Micromachines, vol. 10, no. 1
[34] H. Ulrich et al., "Wafer-level vacuum-packaged two-axis MEMS scanning mirror for pico-projector application," in Proc.SPIE, 2014, vol. 8977, p. 89770
[35] P. Oleg et al., "Laser beam scanning based AR-display applying resonant 2D MEMS mirrors," in Proc.SPIE, 2021, vol. 11765, p. 1176503, doi: 10.1117/12.2579695.
[36] K. Kim, S. Moon, J. Kim, Y. Park, and J.-H. Lee, "Two-axis crosstalk analysis of gimbal-less MEMS scanners with consideration of rotational alignment," Measurement, vol. 171, p. 108785, 2021.
[37] K. Kim, J. Kim, Y. Park, S.-H. Kim, and J.-H. Lee, "Shaped input for reducing crosstalk of two-axis MEMS scanners," Sensors and Actuators A: Physical, vol. 349, p. 114002, 2023.
[38] D. Wang, P. Liang, S. Samuelson, H. Jia, J. Ma, and H. Xie, "Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors," Biomedical Optics Express, vol. 4, no. 10, pp. 2066-2077, 2013
[39] S. Gu-Stoppel et al., "Design, fabrication and characterization of low-voltage piezoelectric two-axis gimbal-less microscanners," in 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), 16-20 June 2013 2013, pp. 2489-2492
[40] F. Senger et al., "A 2D circular-scanning piezoelectric MEMS mirror for laser material processing," in Proc.SPIE, 2021, vol. 11697, p. 1169704
[41] T. Pensala et al., "Wobbling Mode AlN-Piezo-MEMS Mirror Enabling 360-Degree Field of View LIDAR for Automotive Applications," in 2019 IEEE International Ultrasonics Symposium (IUS), 6-9 Oct. 2019 2019, pp. 1977-1980
[42] T. Naono, T. Fujii, M. Esashi, and S. Tanaka, "Non-resonant 2-D piezoelectric MEMS optical scanner actuated by Nb doped PZT thin film," Sensors and Actuators A: Physical, vol. 233, pp. 147-157, 2015/09/01/
[43] F. Senger et al., "A bi-axial vacuum-packaged piezoelectric MEMS mirror for smart headlights," in MOEMS and Miniaturized Systems XIX, 2020, vol. 11293: SPIE, pp. 27-33.
[44] S. Gu-Stoppel, H. J. Quenzer, and W. Benecke, "Design, fabrication and characterization of piezoelectrically actuated gimbal-mounted 2D micromirrors," in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 21-25 June 2015 2015, pp. 851-854
[45] T. Masanao, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, "A Combination of Fast Resonant Mode and Slow Static Deflection of SOI-PZT Actuators for MEMS Image Projection Display," IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, Big Sky, MT, USA, August, 2006, pp. 25-26.
[46] A. Piot, J. Pribošek, and M. Moridi, "Dual-Axis Resonant Scanning MEMS Mirror with Pulsed-Laser-Deposited Barium-Doped PZT," in 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), 25-29 Jan. 2021 2021, pp. 89-92
[47] M. Tani, M. Akamatsu, Y. Yasuda, H. Fujita, and H. Toshiyoshi, "A 2D-optical scanner actuated by PZT film deposited by arc discharged reactive ion-plating (ADRIP) method," in Proc. IEEE-LEOS Conf. Optical MEMS 2004, 2004, pp. 188-189.
[48] H. Khanbareh, V. Topolov, and C. Bowen, Piezo-Particulate Composites. Switzerland, Springer, 2019.
[49] S. Pramanik, B. Pingguan-Murphy, and N. A. Osman, "Developments of immobilized surface modified piezoelectric crystal biosensors for advanced applications," Int. J. Electrochem. Sci, vol. 8, pp. 8863-8892, 2013.
[50] K. Ruotsalainen, D. Morits, O. M. Ylivaara, and J. Kyynäräinen, "Resonating AlN-thin film MEMS mirror with digital control," Journal of Optical Microsystems, vol. 2, no. 1, p. 011006, 2022.
[51] H. Kurita, Z. Wang, H. Nagaoka, and F. Narita, "Fabrication and mechanical properties of carbon-fiber-reinforced polymer composites with lead-free piezoelectric nanoparticles," Sens. Mater, vol. 32, no. 7, 2020.
[52] S. Yagnamurthy, I. Chasiotis, J. Lambros, R. G. Polcawich, J. S. Pulskamp, and M. Dubey, "Mechanical and ferroelectric behavior of PZT-based thin films," Journal of microelectromechanical systems, vol. 20, no. 6, pp. 1250-1258, 2011.
(此全文20250814後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *