帳號:guest(3.23.103.9)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃錦榮
作者(外文):Ng, Jin-Rong
論文名稱(中文):應用於車用光達的壓電式微掃描面鏡之設計與實現
論文名稱(外文):Design and Implementation of Piezoelectric MEMS Scanning Mirror for Automotive LiDAR Applications
指導教授(中文):方維倫
指導教授(外文):Fang, Wei-Leun
口試委員(中文):謝哲偉
湯宗霖
口試委員(外文):Hsieh, Jer-wei
Tang, Tsung-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:110035401
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:96
中文關鍵詞:微機電單軸微掃描面鏡壓電致動PZT
外文關鍵詞:MEMS1D MEMS mirrorPiezoelectric mechanismPZT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:75
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年隨著自駕車的興起,作為自駕車的重要感測技術之一的光學雷達由於具有較佳的解析度以及在夜裡操作不受影響,因此被受關注。微機電式的光學雷達可透過批量製造的方式降低成本、元件體積可微縮化以及快速響應的優勢可應用在各種不同的領域。本研究採用具有低功耗、較大的致動力以及車輛環境的相容性高的壓電式的致動機制實現微掃描的設計。微掃描面鏡設計將會朝向掃描角以及頻率作為本研究的目標。本研究採用雙彎曲的致動器以提升致動器的尖端位移量,並透過拓寬致動器在固定端的面積以增加剛性,藉由S-型連接彈簧的設計以提升元件性能表現。本研究利用以沉積的壓電薄膜PZT的SOI晶圓,藉壓電製程平台批量製作出壓電微掃描面鏡。完成元件製程後會針對微掃描面鏡的動態分析及性能量測。量測結果顯示S型彈簧設計的微掃描面鏡在通以12V_pp的驅動電壓下,共振頻為7345Hz,光學角達到82.8°,當電壓持續提高時元件不幸失效。經由實驗發現,鏡面的掃描頻率隨角度的增加而造成頻率飄移的現象,使掃描模態過於接近出平面模態而造成元件發生斷裂。
In recent years, LiDAR has attracted much attention as one of the vital sensing technologies for self-driving automotive, due to its better resolution and being unaffected at night during an operation with the rise of smart vehicles. MEMS LiDAR can be used in various field due to its advantages of having a lower cost through batch fabrication, size miniaturization and fast response. In this study, a piezoelectric actuation mechanism with low power consumption, large actuation force, and high compatibility with the vehicle environment were adopted to design and implement MEMS scanner. The MEMS mirror design will focus on the scanning angle and frequency. This goal would be achieved through a dual-curved actuator to increase the vertical displacement, expand the actuator area and the S-shaped connection spring. It was fabricated from a PZT thin film on SOI wafer with piezoelectric standard platform. The measurement results show that the S-shaped spring design achieved 82.8°scanning angle at 7345Hz by using 12V_pp driving voltage. The device failed when the voltage increased continuously. It has been discovered through experiments that the scanning frequency of the mirror causes frequency drift as the scanning angle increases. This phenomenon causes the scanning mode to become too closely aligned with the out-of-plane mode, resulting in device fractures.
摘要 I
Abstract II
致謝 III
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 前言 1
1-2 微掃描面鏡文獻回顧 8
1-2-1 靜電式微掃描面鏡 8
1-2-2 電磁式微掃描面鏡 12
1-2-3 壓電式微掃描面鏡 15
1-3 研究動機 19
1-4 全文架構 20
第二章 致動原理與元件設計 34
2-1 微掃描面鏡之性能指標 34
2-2 壓電效應 36
2-3 壓電材料的選擇 38
2-4 微掃描面鏡之結構設計 40
2-4-1 雙彎曲式致動器設計 40
2-4-2 S-型彈簧設計 45
2-4-3 模擬結果之比較 46
第三章 製程流程與結果 56
3-1 製程流程 56
3-2 製程結果與討論 58
第四章 量測結果 64
4-1 元件共振頻率量測 64
4-2 元件共振模態量測 65
4-3 光學掃描角量測 66
4-4 元件失效探討及分析 67
第五章 結論與未來工作 74
5-1 結論 74
5-2 未來工作 75
參考文獻 85
附錄 94
[1]H. Jones, “Whitepaper: Semiconductor Industry from 2015 to 2025," Accessed on: Aug 4, 2015, [Online]. Available: https://www.semi,org/en/semiconductor-industry-2015-2025
[2]Z. Wang, Y. Wu, and Q. Niu, “Multi-sensor fusion in automated driving: A survey,” IEEE Access, vol. 8, pp. 2847-2868, 2019.
[3]H. A. Ignatious and M. Khan, “An overview of sensors in Autonomous Vehicles, ” Procedia Computer Science, vol. 198, pp. 736-741, 2022.
[4]G. G. Goyer and R. Watson, “The laser and its app.lication to meteorology," Bulletin of the American Meteorological Society, vol. 44, pp. 564-570, 1963.
[5]U. Weiss, P. Biber, S. Laible, K. Bohlmann, and A. Zell, “Plant species classification using a 3D LIDAR sensor and machine learning,” 2010 Ninth International Conference on Machine Learning and Applications, Washington, USA, December, 2010, pp. 339-345.
[6]Yole Developp.ement, [Online]. Available: http://www.yole.fr/.
[7]N. Druml, I. Maksymova, T. Thurner, D. van Lierop, M. Hennecke, and A. Foroutan, “1D MEMS micro-scanning LiDAR,” in Conference on Sensor Device Technologies and App.lications (SENSORDEVICES), Venice, Italy, September, 2018.
[8]C. P. Hsu, B. Li, B. Solano-Rivas, A. R. Gohil, P. H. Chan, A. D. Moore, and V. Donzella , “A review and perspective on optical phased array for automotive LiDAR,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 27, pp. 1-16, 2020.
[9]M. Khader and S. Cherian, “An introduction to automotive lidar,” Texas Instruments, 2020.
[10]R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A flat high-frequency scanning micromirror,” Proc. Solid-State Sensor and Actuator Workshop, June, 2000, pp. 6-9
[11]S. Gu-Stopp.el, V.Stenchly, D. Kaden, H.J. Quenzer, B. Wagner, U. Hofmann, and R. Dudde, “New designs for MEMS-micromirrorsand micromirror packaging with electrostatic and piezoelectric drive,” TechConnect Briefs, vol. 4, pp. 87-91, 2016.
[12]T. Pensala, J. Kyynäräinen, J. Dekker, S. Gorelick, P. Pekko, T. Pernu, O. Ylivaara, F. Gao, D. Morits, and J. Kiihamäki, “Wobbling mode AlN-piezo-mems mirror enabling 360-degree field of view LIDAR for automotive app.lications,” 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, Octorbor, 2019, pp. 1977-1980.
[13]K. E. Petersen, “Silicon torsional scanning mirror,” IBM Journal of Research and Development, vol. 24, pp. 631-637, 1980.
[14]L. Lin, S. Lee, K. Pister, and M. Wu, “Micro-machined three-dimensional micro-optics for integrated free-space optical system,” IEEE Photonics Technology Letters, vol. 6, pp. 1445-1447, 1994.
[15]L. Lin, J. Shen, S. Lee, and M. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Optics letters, vol. 21, pp. 155-157, 1996.
[16]L. Lin, J. Shen, S. Lee, and M. Wu, “Surface-micromachined micro-XYZ stages for free-space microoptical bench,” IEEE Photonics Technology Letters, vol. 9, pp. 345-347, 1997.
[17]K. S. Pister, “Hinged polysilicon structures with integrated CMOS TFTs,” Technical Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, USA, June, 1992, pp. 136-139.
[18]L. Fan, M. C. Wu, K. D. Choquette, and M. H. Crawford, “Self-assembled microactuated XYZ stages for optical scanning and alignment,” in Proceedings of International Solid State Sensors and Actuators Conference, IL, USA, June, 1997, pp. 319-322.
[19]L. Fan and M. Wu, “Two-dimensional optical scanner with large angular rotation realized by self-assembled micro-elevator,” IEEE/LEOS Summer Topical Meeting, Monterey, USA, July, 1998, pp. II/107-II/108.
[20]V. A. Aksyuk, F. Pardo, and D. J. Bishop, “Stress-induced curvature engineering in surface-micromachined devices,” Design, Test, and Microfabrication of MEMS and MOEMS, vol. 3680, pp. 984-993, 1999.
[21]V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles, and D. J. Bishop, “Lucent Microstar micromirror array technology for large optical crossconnects,” MOEMS and Miniaturized Systems, vol. 4178, pp. 320-324, 2000.
[22]V. A. Aksyuk, F. Pardo, D. Carr, D. Greywall, H. B. Chan, M. E. Simon, A. Gasparyan, H. Shea, V. Lifton, C. Bolle, S. Arney, R. Frahm, M. Paczkowski, M. Haueis, Ronald Ryf, David T. Neilson, C. Randy Giles, and D. Bishop, “Beam-steering micromirrors for large optical cross-connects,” Journal of lightwave technology, vol. 21, pp. 634-642, 2003.
[23]L.-Y. Lin, E. L. Goldstein, and R. W. Tkach, “On the expandability of free-space micromachined optical cross connects,” Journal of lightwave technology, vol. 18, pp. 482-489, 2000.
[24]R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “Dynamic deformation of scanning mirrors,” 2000 IEEE/LEOS International Conference on Optical MEMS, Kauai, Hawaii, August, 2000, pp. 49-50
[25]M. R. Hart, R. A. Conant, K. Y. Lau, and R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” Journal of Microelectromechanical Systems, vol. 9, pp. 409-418, 2000.
[26]V. Milanović, M. Last, and K. S. Pister, “Torsional micromirrors with lateral actuators,” International Conference on Solid-State Sensors and Actuators, Munich, Germany, June, 2001, pp. 1270-1273.
[27]V. Milanovic, “Multilevel beam SOI-MEMS fabrication and app.lications,” Journal of Microelectromechanical Systems, vol. 13, pp. 19-30, 2004.
[28]M. Wu and W. Fang, “Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes,” Journal of Micromechanics and Microengineering, vol. 15, pp. 535-542, 2005.
[29]M. Wu and W. Fang, “A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS,” Journal of Micromechanics and Microengineering, vol. 16, pp. 260-265, 2006.
[30]M. Wu, H.-Y. Lin, and W. Fang, “A poly-si-based vertical comb-drive two-axis gimbaled scanner for optical app.lications,” IEEE photonics technology letters, vol. 18, pp. 2111-2113, 2006.
[31]A. Arslan, D. Brown, W. O. Davis, S. Holmstrom, S. K. Gokce, and H. Urey, “Comb-actuated resonant torsional microscanner with mechanical amplification,” Journal of Microelectromechanical Systems, vol. 19, pp. 936-943, 2010.
[32]S. K. Gokce, S. Holmstrom, D. Brown, W. O. Davis, and H. Urey, “A high-frequency comb-actuated resonant MEMS scanner for microdisplays,” 16th International Conference on Optical MEMS and Nanophotonics, Istanbul, Turkey, August, 2011, pp. 35-36.
[33]A. C.-L. Hung, H. Y.-H. Lai, T.-W. Lin, S.-G. Fu, and M. S.-C. Lu, “An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display,” Sensors and Actuators A: Physical, vol. 222, pp. 122-129, 2015.
[34]S.-H. Ahn and Y.-K. Kim, “Silicon scanning mirror of two DOF with compensation current routing,” Journal of Micromechanics and Microengineering, vol. 14, pp. 1455-1461, 2004.
[35]H. A. Yang and W. Fang, “A novel coil-less lorentz force 2D scanning mirror using eddy current,” IEEE MEMS International Conference, Istanbul, Turkey, January, 2006, pp. 774-777
[36]C. H. Ji, S. H. Ahn, K. C. Song, H. K. Yoon, M. Choi, S. C. Kim, and J. U. Bu, “Dual-axis electromagnetic scanning micromirror using radial magnetic field,” IEEE MEMS International Conference, Turkey, January, 2006, pp. 32-35
[37]A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” Journal of Microelectromechanical Systems, vol. 15, pp. 786-794, 2006.
[38]H. J. Cho, J. Yan, S. T. Kowel, F. R. Beyette Jr, and C. H. Ahn, “Scanning silicon micromirror using a bidirectionally movable magnetic microactuator,” in Proc.SPIE, vol. 4178, 2000.
[39]湯宗霖, “利用靜磁力與勞侖之力驅動雙軸循序掃描面鏡”, 國立清華大學碩士論文, 2006.
[40]H.-A. Yang, T.-L. Tang, S. T. Lee, and W. Fang, “A novel coilless scanning mirror using eddy current Lorentz force and magnetostatic force,” Journal of Microelectromechanical Systems, vol. 16, pp. 511-520, 2007.
[41]F. Filhol, E. Defay, C. Divoux, C. Zinck, and M.-T. Delaye, “Resonant micro-mirror excited by a thin-film piezoelectric actuator for fast optical beam scanning,” Sensors and Actuators A: Physical, vol. 123, pp. 483-489, 2005.
[42]M. Tani, M. Akamatsu, Y. Yasuda, and H. Toshiyoshi, “A two-axis piezoelectric tilting micromirror with a newly developed PZT-meandering actuator, ” 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo,2007, pp. 699-702
[43]U. Baran, D. Brown, S. Holmstrom, D. Balma, W. O. Davis, P. Muralt, and H. Urey, “Resonant PZT MEMS scanner for high-resolution displays,” Journal of microelectromechanical systems, vol. 21, pp. 1303-1310, 2012.
[44]S. Gu-Stoppel, J. Janes, D. Kaden, H. Quenzer, U. Hofmann, and W. Benecke, “Piezoelectric resonant micromirror with high frequency and large deflection applying mechanical leverage amplification,” in Proc.SPIE, vol. 8612, pp. 122-129, 2013.
[45]G. Mendicino, M. Merli, R. Carminati, N. Boni, A. Opreni, and A. Frangi, “Electro-mechanical validation of a resonant MEMS mirror with PZT actuation and PZR sensing,” in Proc.SPIE, vol. 11697, 2021.
[46]劉世棋, “性能提升之壓電微掃描面鏡設計與實現”, 國立清華大學碩士論文, 2022.
[47]M. Dekkers, H. Boschker, M. Van Zalk, M. Nguyen, H. Nazeer, E. Houwman, and G. Rijnders, “The significance of the piezoelectric coefficient d31, eff determined from cantilever structures,” Journal of micromechanics and microengineering, vol. 23, p. 025008, 2013.
[48]A. Qabur and K. Alshammari, “A systematic review of energy harvesting from roadways by using piezoelectric materials technology. Innov,” Energy Res, vol. 7, pp. 1-6, 2018.
[49]I. Kanno, H. Kotera, and K. Wasa, “Measurement of transverse piezoelectric properties of PZT thin films,” Sensors and Actuators A: Physical, vol. 107, pp. 68-74, 2003.
[50]Q.-M. Wang, X.-H. Du, B. Xu, and L. E. Cross, “Electromechanical coupling and output efficiency of piezoelectric bending actuators,” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 46, pp. 638-646, 1999.
[51]Q.-M. Wang, Q. Zhang, B. Xu, R. Liu, and L. E. Cross, “Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields,” Journal of App.lied Physics, vol. 86, pp. 3352-3360, 1999.
[52]R. Farrugia, I. Grech, O. Casha, J. Micallef, and E. Gatt, “Analysis of dynamic deformation in 1-D resonating micromirrors,” 2016 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2016, pp. 1-6
[53]S. Hsu, T. Klose, C. Drabe, and H. Schenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” Journal of Optics A: Pure and App.lied Optics, vol. 10, pp. 1-8, 2008.
[54]F. Schwarz, F. Senger, J. Albers, P. Malaurie, C. Janicke, L. Pohl, F. Heinrich, D. Kaden, H. J. Quenzer, F. Lofink and A. Bahr, “Resonant 1D MEMS mirror with a total optical scan angle of 180° for automotive LiDAR,” in Proc.SPIE, vol. 11293, pp. 46-62, 2020.
[55]S. Pramanik, B. Pingguan-Murphy, and N. A. Osman, “Developments of immobilized surface modified piezoelectric crystal biosensors for advanced app.lications,” Int. J. Electrochem. Sci, vol. 8, pp. 8863-8892, 2013.
[56]M. A. Fraga, H. Furlan, R. Pessoa, and M. Massi, “Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors app.lied at high temperatures: an overview,” Microsystem technologies, vol. 20, pp. 9-21, 2014.
[57]王銘瑋, “藉由扭轉軸設計提升壓電式單軸微掃描面鏡之光達性能”, 國立清華大學碩士論文, 2021.

(此全文20260903後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *