帳號:guest(18.117.91.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):涂倫愷
作者(外文):Tu, Kevin L.K.
論文名稱(中文):發展具情緒分析能力之多輪智慧聊天機器人—以三方對談學生諮商系統為例
論文名稱(外文):Development of a multi-turn dialogue chatbot system: A case of trilateral virtual reality student counselling and communication system
指導教授(中文):張瑞芬
指導教授(外文):Trappey, Amy J. C.
口試委員(中文):黃雪玲
王東美
口試委員(外文):Hwang, Sheue-Ling
Wang, Tong-Mei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:110034607
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:98
中文關鍵詞:學校壓力虛擬實境心理諮商聊天機器人情緒理解虛擬治療
外文關鍵詞:School stressesOnline counselingVirtual realityVirtual psychotherapyCounseling chatbotConversational sentiment analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今資訊爆炸及個人意識抬頭的年代,學生面臨比以往更多的壓力,例如學業、家庭、朋友、工作以及財務等方面問題,不同問題也有越來越複雜的趨勢。有些學生因而顯得不知所措、不知道該如何面對壓力、不知道該如何嘗試自我解決或是紓解壓力。長期微小壓力的累積,可能在某一刻開始造成學生巨大的困擾,諸如頭痛、失眠、飲食不正常、焦慮、憂鬱、反社會性格、甚至自殺傾向。若不加以注意及追蹤,等到造成不可逆的結果時,一切都為時已晚。在全國大專院校中,儘管設有輔導室提供心理諮商服務,但迫於資源分布不均,諮商師供不應求,預約常需要等候,使得部分學生無法及時得到協助。為解決這些問題,本研究開發一個三方對談學生諮商系統,旨在提供即時以及讓學生無壓力接受心理諮商的平台。本研究創新之處在於提出三方諮商的框架,使系統可以同時容納包含學生、諮商師、以及聊天機器人共同在虛擬實境(VR)辦公室場景進行諮商。本研究也設計容許透過網頁來訪問本系統,使得沒有VR的環境下也能進行諮商。聊天機器人包含三大模組:自然語言理解(NLU)、對話管理(DM)、以及自然語言生成(NLG)。聊天機器人事先加以訓練使用者意圖包含心理問題及情緒的範例、多種諮商情境流程、以及常見學生心理問題與回答(FAQs),使得機器人與學生之間多輪諮商對話得以進行,機器人能理解學生的心理問題及情緒,並產生最貼切的建議。本研究特地設計讓諮商師能夠全程參與諮商過程,隨時提出自己的意見,協助補充聊天機器人的回答,使得學生可以得到最好的治療。本研究也特別將原本聊天機器人針對相同心理問題而給予學生的回答,去進行改寫,使得每次回答都不盡相同,讓諮商體驗更臻完善。最後本研究系統驗證包含量化與質性研究。量化研究針對聊天機器人每種模組,使用多種模型進行績效研究,來選出最好的模型,作為本研究聊天機器人各個模組的模型。質性研究則透過訪問具學校諮商經驗的諮商師,詢問諮商師的專業意見、比較本研究系統與傳統諮商的差異、說明系統未來改善建議、並提供未來學生諮商系統的發展指引。
College students experience heightened stress during the era of information overload. This stress stems from various sources, such as studies, family, friends, work, and finance, and has become increasingly prevalent. However, counseling resources are often limited, and students require prompt and multiple therapy sessions to avoid making matters worse. To address these challenges, this study proposes a trilateral counseling system consisting of two chatrooms and a chatbot. The novelty of this system is trilateral conversations, which involve a student, a counselor, and the chatbot, having therapy sessions together within a virtual reality (VR) chatroom. Additionally, a web-based chatroom is available for situations where VR access is inconvenient. Our chatbot, equipped with three crucial modules, including natural language understanding (NLU), dialogue management (DM), and natural language generation (NLG), are able to initiate multi-turn conversations with the student. Its knowledge base is built upon frequently asked questions (FAQs) in psychological counseling. Thanks to these three modules, the system effectively identifies student issues and emotions during conversations, allows therapy sessions to follow predetermined scenarios, and provides timely suggestions to the student. Moreover, the chatbot rephrases responses from FAQs to enhance the overall counseling experience. The counselor can oversee the therapy session and offer professional advice whenever needed. The research selects multiple model options for three modules and then evaluates their performance using metrics. The best models for each module are chosen to construct the system. Furthermore, feedback from counselors that are experienced in school counseling is obtained to gather their opinions on the system and provide insights for further research development.
摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables VI
1 Introduction 1
1.1 Research background 1
1.2 Research purpose 2
1.3 Research framework 3
2 Literature Review 5
2.1 Psychotherapy used for student stress 5
2.2 Healthcare applications using immersive technologies 7
2.3 Advanced chatbots with natural language conversation capability 10
3 System Framework and Key Methodologies 17
3.1 System framework 17
3.2 Avatar-based chatroom jointed by student, counselor, and chatbot 18
3.3 Empathy-centric counseling NLP chatbot 22
4 System Implementation 27
4.1 Chatroom interface 27
4.2 Preparing dataset 28
4.3 Natural language understanding (NLU) 32
4.4 Dialogue management (DM) 33
4.5 Natural language generation (NLG) 34
4.6 Counseling case scenarios and demonstrations 36
5 Prototype System Verification and Evaluation 45
5.1 Module program testing 45
5.2 Evaluation feedback from domain experts 56
6 Conclusions 65
References 69
Appendix A 76
Appendix B 78
Appendix C 81
Appendix D 84
Appendix E 89
[1] Abdellatif, A., Badran, K., Costa, D., & Shihab, E. (2021). A Comparison of Natural Language Understanding Platforms for Chatbots in Software Engineering. IEEE Transactions on Software Engineering, 1-1. https://doi.org/10.1109/TSE.2021.3078384
[2] Alisetti, S. V. (n.d.). Vamsi/T5_Paraphrase_Paws Hugging Face Retrieved December 13, 2022, from https://huggingface.co/Vamsi/T5_Paraphrase_Paws
[3] American Psychological Association. (2009). Different approaches to psychotherapy Retrieved October 24, 2022, from https://www.apa.org/topics/psychotherapy/approaches
[4] American School Counselor Association. (2021). School Counselor Roles & Ratios Retrieved August 9, 2022, from https://www.schoolcounselor.org/About-School-Counseling/School-Counselor-Roles-Ratios
[5] Arpaia, P., De Benedetto, E., De Paolis, L., D'Errico, G., Donato, N., & Duraccio, L. (2022). Performance and Usability Evaluation of an Extended Reality Platform to Monitor Patient's Health during Surgical Procedures. Sensors (Basel), 22(10). https://doi.org/10.3390/s22103908
[6] Bertagnolli, N. (2020). Counsel Chat: Bootstrapping High-Quality Therapy Data Towards Data Science. Retrieved August 17, 2022, from https://towardsdatascience.com/counsel-chat-bootstrapping-high-quality-therapy-data-971b419f33da
[7] Braun, D., Hernandez Mendez, A., Matthes, F., & Langen, M. (2017). Evaluating Natural Language Understanding Services for Conversational Question Answering Systems. https://doi.org/10.18653/v1/W17-5522
[8] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . . Amodei, D. (2020). Language Models are Few-Shot Learners. https://doi.org/10.48550/ARXIV.2005.14165
[9] Bunk, T., Varshneya, D., Vlasov, V., & Nichol, A. (2020). DIET: Lightweight Language Understanding for Dialogue Systems. ArXiv. https://doi.org/10.48550/arXiv.2004.09936
[10] Çavuşoğlu, D. (2021). Evaluation Metrics: Assessing the quality of NLG outputs Retrieved December 19, 2022, from https://towardsdatascience.com/evaluation-metrics-assessing-the-quality-of-nlg-outputs-39749a115ff3
[11] Chamberlain, D., Jimenez-Galindo, A., Fletcher, R. R. n., & Kodgule, R. (2016). Applying Augmented Reality to Enable Automated and Low-Cost Data Capture from Medical Devices Proceedings of the Eighth International Conference on Information and Communication Technologies and Development , articleno = 42 , numpages = 4, https://doi.org/10.1145/2909609.2909626
[12] Chen, P.-J., & Liou, W.-K. (2022). Development and Application of AR-Based Assessment System for Infant Airway Obstruction First Aid Training. Children, 9(11), 1622. https://www.mdpi.com/2227-9067/9/11/1622
[13] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. ArXiv. https://doi.org/10.48550/arXiv.1406.1078
[14] Colby, K. M., Weber, S., & Hilf, F. D. (1971). Artificial Paranoia. Artificial Intelligence, 2(1), 1-25. https://doi.org/10.1016/0004-3702(71)90002-6
[15] Corey, G. (2016). Theories and Practice of Counseling & Psychotherapy (10th ed.). Brooks/Cole, Cengage Learning.
[16] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv. https://doi.org/10.48550/arXiv.1810.04805
[17] Exit Games. (n.d.). Photon Engine: Multiplayer Game Development Made Easy Retrieved August 18, 2022, from https://www.photonengine.com/en-US/Photon
[18] Explosion. (n.d.-a). English spaCy Models Documentation Retrieved December 13, 2022, from https://spacy.io/models/en
[19] Explosion. (n.d.-b). Industrial-Strength Natural Language Processing IN PYTHON Retrieved August 17, 2022, from https://spacy.io/
[20] Fast-Berglund, Å., Gong, L., & Li, D. (2018). Testing and validating Extended Reality (xR) technologies in manufacturing. Procedia Manufacturing, 25, 31-38. https://doi.org/10.1016/j.promfg.2018.06.054
[21] Feng, F., Yang, Y., Cer, D. M., Arivazhagan, N., & Wang, W. (2020). Language-agnostic BERT Sentence Embedding. ArXiv. https://doi.org/10.48550/arXiv.2007.01852
[22] Ferreira, J. M. M., & Qureshi, Z. I. (2020). Use of XR technologies to bridge the gap between Higher Education and Continuing Education 2020 IEEE Global Engineering Education Conference (EDUCON), https://doi.org/10.1109/EDUCON45650.2020.9125346
[23] Galitsky, B. (2019). Chatbot Components and Architectures. In Developing Enterprise Chatbots (pp. 13-51). Springer, Cham. https://doi.org/10.1007/978-3-030-04299-8_2
[24] Gerard, S., & Christopher, B. (1988). Term-weighting approaches in automatic text retrieval. Information Processing & Management, 24(5), 513-523. https://doi.org/10.1016/0306-4573(88)90021-0
[25] Gilchrist, H., & Sullivan, G. (2006). Barriers to help-seeking in young people: Community beliefs about youth suicide. Australian Social Work, 59, 73-85. https://doi.org/10.1080/03124070500449796
[26] Google. (n.d.-a). Speech-to-Text: Automatic Speech Recognition - Google Cloud Retrieved August 17, 2022, from https://cloud.google.com/speech-to-text
[27] Google. (n.d.-b). Text-to-Speech: Lifelike Speech Synthesis - Google Cloud Retrieved August 17, 2022, from https://cloud.google.com/text-to-speech
[28] Gratas, B. (2023). 50 ChatGPT Statistics and Facts You Need to Know Retrieved March 1, 2023, from https://blog.invgate.com/chatgpt-statistics
[29] Harshitha, Chaitanya, V., Killedar, S. M., Revankar, D., & Pushpa, M. S. (2019). Recognition and Prediction of Breast Cancer using Supervised Diagnosis https://doi.org/10.1109/RTEICT46194.2019.9016921
[30] Healtho. (2016). CounselChat: Mental health answers from counselors Retrieved August 17, 2022, from https://counselchat.com/
[31] Ho, C.-C., & Lin, Y.-H. (2013). Zi Shang Yu Xin Li Zhi Liao Li Lun Yu Shi Wu [Theory and Practice of Counseling and Psychotherapy]. Wu-Nan Book Inc.
[32] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, 9, 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
[33] IBM. (n.d.). IBM Watson Retrieved August 10, 2022, from https://www.ibm.com/watson
[34] Jeremy, B., Alyssa, C., Colleen, C., & Keith, J. R. (2019). Getting Ready for Adult Healthcare: Designing a Chatbot to Coach Adolescents with Special Health Needs Through the Transitions of Care. Journal of Pediatric Nursing, 49, 85-91. https://doi.org/10.1016/j.pedn.2019.09.004
[35] Kaur, R., Sun, R., Ziegelman, L., Sowers, R., & Hernandez, M. E. (2019). Using Virtual Reality to Examine the Neural and Physiological Responses to Height and Perturbations in Quiet Standing https://doi.org/10.1109/EMBC.2019.8857647
[36] Lee, C.-W., Wang, Y.-S., Hsu, T.-Y., Chen, K.-Y., Lee, H.-Y., & Lee, L.-s. (2018). Scalable Sentiment for Sequence-to-sequence Chatbot Response with Performance Analysis. https://doi.org/10.48550/ARXIV.1804.02504
[37] Lee, S. H., Yeh, S. C., Chan, R. C., Chen, S., Yang, G., & Zheng, L. R. (2016). Motor Ingredients Derived from a Wearable Sensor-Based Virtual Reality System for Frozen Shoulder Rehabilitation. Biomed Res Int, 2016, 7075464. https://doi.org/10.1155/2016/7075464
[38] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. ArXiv. https://doi.org/10.48550/arXiv.1910.13461
[39] Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out (pp. 74-81). Association for Computational Linguistics. https://aclanthology.org/W04-1013
[40] Liu, Z., Xu, A., Guo, Y., Mahmud, J. U., Liu, H., & Akkiraju, R. (2018). Seemo: A Computational Approach to See Emotions Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal QC, Canada. https://doi.org/10.1145/3173574.3173938
[41] Lush, V., Buckingham, C., Edwards, S., & Bernardet, U. (2020). Towards Accessible Mental Healthcare through Augmented Reality and Self-Assessment Tools. International Journal of Online and Biomedical Engineering (iJOE), 16(04), pp. 33-42. https://doi.org/10.3991/ijoe.v16i04.12095
[42] Medeiros, L., Bosse, T., & Gerritsen, C. (2022). Can a Chatbot Comfort Humans? Studying the Impact of a Supportive Chatbot on Users' Self-Perceived Stress. IEEE Transactions on Human-Machine Systems, 52(3), 343-353. https://doi.org/10.1109/THMS.2021.3113643
[43] Microsoft. (n.d.). LUIS (Language Understanding) - Cognitive Services - Microsoft Retrieved August 10, 2022, from https://www.luis.ai/
[44] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. ArXiv. https://doi.org/10.48550/arXiv.1301.3781
[45] Nadarzynski, T., Miles, O., Cowie, A., & Ridge, D. (2019). Acceptability of artificial intelligence (AI)-led chatbot services in healthcare: A mixed-methods study. Digit Health, 5, 2055207619871808. https://doi.org/10.1177/2055207619871808
[46] Ni, L., Lu, C., Liu, N., & Liu, J. (2017). MANDY: Towards a Smart Primary Care Chatbot Application. In J. Chen, T. Theeramunkong, T. Supnithi, & X. Tang (Eds.), Knowledge and Systems Sciences (pp. 38-52). Springer Singapore. https://doi.org/10.1007/978-981-10-6989-5_4
[47] Ong, T., Wilczewski, H., Paige, S. R., Soni, H., Welch, B. M., & Bunnell, B. E. (2021). Extended Reality for Enhanced Telehealth During and Beyond COVID-19: Viewpoint. JMIR Serious Games, 9(3). https://doi.org/10.2196/26520
[48] OpenAI. (2022). Introducing ChatGPT Retrieved March 1, 2023, from https://openai.com/blog/chatgpt
[49] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. https://doi.org/10.48550/ARXIV.2203.02155
[50] Papineni, K., Roukos, S., Ward, T., & Zhu, W.-J. (2002). BLEU: A Method for Automatic Evaluation of Machine Translation Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, https://doi.org/10.3115/1073083.1073135
[51] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830. http://jmlr.org/papers/v12/pedregosa11a.html
[52] Persky, S. (2011). Employing immersive virtual environments for innovative experiments in health care communication. Patient Educ Couns, 82(3), 313-317. https://doi.org/10.1016/j.pec.2010.12.007
[53] Pola, S., & Chetty, M. S. R. (2021). Behavioral therapy using conversational chatbot for depression treatment using advanced RNN and pretrained word embeddings. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.02.521
[54] Preciado, C. E., Starrett, M. J., & Ekstrom, A. D. (2018). Assessment of a Short, Focused Training to Reduce Symptoms of Cybersickness. Presence: Teleoperators and Virtual Environments, 27(4), 361-377. https://doi.org/10.1162/pres_a_00335
[55] Quora. (n.d.). Quora https://www.quora.com/
[56] Raffel, C., Shazeer, N. M., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. ArXiv. https://doi.org/10.48550/arXiv.1910.10683
[57] Rasa. (2022). Policies Retrieved December 13, 2022, from https://rasa.com/docs/rasa/policies/
[58] Rasa. (n.d.). Rasa: Open source conversational AI Retrieved August 10, 2022, from https://rasa.com/
[59] RhymBil. (2023). How to MAKE and PUBLISH a Chat website with Firebase using HTML & JavaScript Retrieved May 9, 2023, from https://rhymbil.netlify.app/
[60] Rogers, C. R. (1957). The necessary and sufficient conditions of therapeutic personality change. Journal of Consulting Psychology, 21, 95-103. https://doi.org/10.1037/h0045357
[61] Rusnida, R., Fatin Nur Hazwani Binti Mohd, W., & Amar Raaj Singh, A. L. G. S. (2021). AR Heart: A Development of Healthcare Informative Application using Augmented Reality. Journal of Physics: Conference Series, 1962(1), 012065. https://doi.org/10.1088/1742-6596/1962/1/012065
[62] Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39(6), 1161-1178. https://doi.org/10.1037/h0077714
[63] Sai, A. B., Mohankumar, A. K., & Khapra, M. M. (2020). A Survey of Evaluation Metrics Used for NLG Systems. https://doi.org/10.48550/arxiv.2008.12009
[64] Scikit-learn developers. (2022). 3.3.2.13. Matthews correlation coefficient Retrieved October 30, 2022, from https://scikit-learn.org/stable/modules/model_evaluation.html#matthews-corrcoef
[65] Serban, I. V., Sankar, C., Germain, M., Zhang, S., Lin, Z., Subramanian, S., Kim, T., Pieper, M., Chandar, S., Ke, N. R., Rajeshwar, S., Brebisson, A. d., Sotelo, J. M. R., Suhubdy, D., Michalski, V., Nguyen, A., Pineau, J., & Bengio, Y. (2017). A Deep Reinforcement Learning Chatbot. https://doi.org/10.48550/ARXIV.1709.02349
[66] Taiwan Counseling Psychologist Union. (2021). quan lian hui diao cha mei 4 wei da xue sheng you 1 ren jie shou xin li zi shang [TCPU: 1 in 4 college students receive psychological counseling]. The Liberty Times. Retrieved October 22, 2022, from https://news.ltn.com.tw/news/life/breakingnews/3725650
[67] Trappey, A., Trappey, C. V., Chang, C.-M., Tsai, M.-C., Kuo, R. R. T., & Lin, A. P. C. (2021). Virtual Reality Exposure Therapy for Driving Phobia Disorder (2): System Refinement and Verification. Applied Sciences, 11(1), 347. https://doi.org/10.3390/app11010347
[68] Trappey, A. J. C., Lin, A. P. C., Hsu, K. Y. K., Trappey, C. V., & Tu, K. L. K. (2022). Development of an Empathy-Centric Counseling Chatbot System Capable of Sentimental Dialogue Analysis. Processes, 10(5), 930. https://doi.org/10.3390/pr10050930
[69] Turing, A. M. (1950). I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433
[70] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30. https://doi.org/10.48550/arXiv.1706.03762
[71] Wang, W., Yang, B., Guan, C., & Li, B. (2019). A VR Combined with MI-BCI Application for Upper Limb Rehabilitation of Stroke https://doi.org/10.1109/IMBIOC.2019.8777805
[72] Warner, C. H., Appenzeller, G. N., Grieger, T., Belenkiy, S., Breitbach, J., Parker, J., Warner, C. M., & Hoge, C. (2011). Importance of Anonymity to Encourage Honest Reporting in Mental Health Screening After Combat Deployment. Archives of General Psychiatry, 68(10), 1065-1071. https://doi.org/10.1001/archgenpsychiatry.2011.112
[73] Weizenbaum, J. (1966). ELIZA—a Computer Program for the Study of Natural Language Communication between Man and Machine. Commun. ACM, 9(1), 36–45 , numpages = 10. https://doi.org/10.1145/365153.365168
[74] Woebot Health. (2017). Relational Agent for Mental Health | Woebot Health Retrieved June 13, 2023 from https://woebothealth.com
[75] Wolf, E., Merdan, N., Dölinger, N., Mal, D., Wienrich, C., Botsch, M., & Latoschik, M. E. (2021). The Embodiment of Photorealistic Avatars Influences Female Body Weight Perception in Virtual Reality https://doi.org/10.1109/VR50410.2021.00027
[76] Wu, S.-X. (2021). yi qing zhong duan 3 wan you yu xue sheng zi shang guan dao xin li shi ji han: yi zhi bei fa gui dang zai wai mian [Pandemic stop 30,000 students from receiving therapy; Counselors: always blocked by regulations]. The Storm Media. Retrieved October 22, 2022, from https://new7.storm.mg/article/3766083
[77] Wysa. (2017). Wysa - Everyday Mental Health Retrieved June 13, 2023 from https://www.wysa.com
[78] Xu, B., & Zhuang, Z. (2022). Survey on psychotherapy chatbots. Concurrency and Computation: Practice and Experience, 34(7), e6170. https://doi.org/10.1002/cpe.6170
[79] Youper. (2017). Youper: Artificial Intelligence For Mental Health Care Retrieved June 13, 2023 from https://www.youper.ai
[80] Zhang, J., Zhao, Y., Saleh, M., & Liu, P. (2020). Pegasus: Pre-training with extracted gap-sentences for abstractive summarization International Conference on Machine Learning, https://doi.org/10.48550/arXiv.1912.08777
[81] Zhang, Q., Karunanithi, M., & Kang, C. (2019). Immersive Augmented Reality (I Am Real) – Remote Clinical Consultation 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). https://doi.org/10.1109/BHI.2019.8834641
[82] Zhang, T., Kishore, V., Wu, F., Weinberger, K. Q., & Artzi, Y. (2019). BERTScore: Evaluating Text Generation with BERT. https://doi.org/10.48550/arxiv.1904.09675
[83] Zhang, Y., Baldridge, J., & He, L. (2019). PAWS: Paraphrase Adversaries from Word Scrambling. ArXiv, abs/1904.01130. https://doi.org/10.48550/arXiv.1904.01130
[84] Zhang, Y., Zheng, J., Jiang, Y., Huang, G., & Chen, R. (2019). A Text Sentiment Classification Modeling Method Based on Coordinated CNN-LSTM-Attention Model. Chinese Journal of Electronics, 28(1), 120-126. https://doi.org/10.1049/cje.2018.11.004
[85] Zhou, H., Huang, M., & Zhu, X. (2016). Context-aware Natural Language Generation for Spoken Dialogue Systems. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan.
(此全文20260620後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *