帳號:guest(3.133.128.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曹 靖
作者(外文):Cao, Jing
論文名稱(中文):選單類型對觸控式介面操作績效的影響
論文名稱(外文):Effects of menu types on operational performance of touchscreen
指導教授(中文):李昀儒
指導教授(外文):Lee, Yun-Ju
口試委員(中文):瞿志行
黃瀅瑛
趙文瑀
口試委員(外文):Chu, Chih-Hsing
Huang, Ying-Yin
Chao, Wen-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:110034579
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:91
中文關鍵詞:選單類型視覺空間工作記憶負荷心智負荷眼動追蹤腦波
外文關鍵詞:menu typevisuospatial working memory loadmental workloadeye trackingelectroencephalography (EEG)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著車輛自動化駕駛程度提升及電子化,駕駛員必需透過操作車載資訊系統(In-vehicle Information/Infotainment System, IVIS)完成駕駛任務,因此提升人員IVIS操作績效並降低使用時心智負荷變得至關重要。IVIS的不同選單設計類型會對人員的操作績效有影響,然而探討在不同程度視覺空間工作記憶(Visuospatial Working Memory, VSWM)負荷下的選單操作績效尚不明確。因此,本研究透過IVIS評估選單類型於不同VSWM負荷下對選單操作的影響,並透過眼動追蹤、腦波數據與主觀問卷,以探討受試者同時執行選單作業與VSWM誘發任務的不同情境組合中,對於搜尋績效和認知負荷指標的影響。
本研究招募36位無眼部疾病之受試者,皆具有有效的小型車汽車駕照。受試者將會分為兩組,分別使用階層式選單(hierarchical menu, H)與群組式選單(grouping menu, G)進行實驗主要作業。受試者於3次正式實驗中,將依照語音點選選單中對應的選項,同時依隨機順序分別執行低中高不同難度(負荷程度由低中高:情境1、2、3)之VSWM負荷次要任務,隨後於每次完成實驗後填寫NASA-TLX問卷。實驗作業的過程中將配戴眼動儀與腦波儀。
研究結果顯示,在特定選項數量之選單設計中,使用群組式選單具有較佳之作業績效與視覺搜尋效率,包含較短的選單作業平均反應時間(G=2.23;H=2.83秒),較少的選單區域凝視次數(G=49.59;H=66.57),與較少的掃視時間過長次數(G=2.89;H=6.06)。而VSWM負荷程度越高,使用選單時的操作績效則會越差,包含較低的選單作業完成率(情境1=0.88;情境3=0.80;與情境2無顯著差異),較長的選單作業平均反應時間(情境1=2.43;情境2=2.56;情境3=2.61秒),與較低的VSWM正確率(情境1=0.84;情境2=0.79;情境3=0.73)。使用階層式選單時,於VSWM負荷程度越高,則主觀認知負荷程度越高(NASA-TLX平均分數:情境1=64.80;情境2=71.83;情境3=78.88);使用群組式選單時,主觀認知負荷程度則不受VSWM負荷程度影響。腦波之枕葉θ波相對功率值顯示使用群組式選單具有較低之認知負荷,中央區α波相對功率值則顯示認知負荷與VSWM負荷程度具一致性。建議後續研究可加入真實之選單操作情境,並透過駕駛模擬以執行多重任務,以提供車載與飛航資訊系統更實際之設計準則。本研究之潛在應用在於,高目標導向搜尋作業中,應以凝視次數做為視覺搜尋績效的主要指標。此外,未來對於IVIS之測試,應納入VSWM干擾因素之考量。最後,納入主、客觀之指標有其價值。
Drivers must engage with in-vehicle information/infotainment system (IVIS) to fulfill driving tasks as vehicle automation and electronic integration advance. Therefore, enhancing driver’s IVIS performance and reducing mental workload during usage have become crucial. Different types of IVIS menus will impact task performance, however, exploring the menu operation performance under different levels of visuospatial working memory (VSWM) load is unclear. Therefore, this study evaluated the impact of two menu types on menu operations under different VSWM loads through an IVIS. It employed task performance, eye-tracking, EEG data, and subjective questionnaires to investigate the effects of different combinations of menu tasks and VSWM-inducing tasks on search performance and mental workload indicators of participants.
The present study recruited 36 subjects with valid car driver's licenses without eye diseases. The subjects will be divided into two groups, using hierarchical (H) and grouping (G) menus, respectively, to carry out the main task of the experiment. In the three formal experiments, subjects will use voice commands of select menu options corresponding to the spoken instructions. They will concurrently perform three different levels of secondary VSWM load tasks (load levels from low to high: Condition 1, 2, 3) in random order. After completing each experiment, subjects will fill out the NASA-TLX questionnaire. Subjects will wear both eye-tracking devices and EEG equipment during the experiments.
The research findings indicate that for menu designs with a specific number of items, using a grouping menu results in better task performance and visual search efficiency, including faster average reaction times (G=2.23; H=2.8 s), fewer fixations on the menu area (G=49.59; H=66.57), and fewer long glance times (G=2.89; H=6.06). As the VSWM load increased, the menu’s operational performance worsened, including lower menu task completion rates (Condition 1=0.88; Condition 3=0.80; No significant difference from Condition 2), longer reaction times for menu tasks (Condition 1=2.43; Condition 2=2.56; Condition 3=2.61 s), and lower VSWM correct rate (Condition 1=0.84; Condition 2=0.79; Condition 3=0.73). Using the hierarchical menu, higher VSWM load corresponds to greater subjective mental workload (Mean NASA-TLX scores: Condition 1=64.80; Condition 2=71.83; Condition 3=78.88); however, this relationship is unaffected by VSWM load when using the grouping menu. The relative power of theta band in the occipital region of the brain indicates that utilizing a grouping menu design is associated with lower mental workload. Additionally, the relative power of alpha band in the central region of the brain indicate consistency between mental workload and the level of VSWM load. Future studies are recommended to incorporate real menu operation scenarios and execute multitasking through driving simulations to provide more realistic design guidelines for in-vehicle and aviation information systems. The potential application of this study is that the number of fixations should be used as the primary indicator of visual search performance in highly goal-oriented search tasks. In addition, the future test of IVIS should consider VSWM interference factors. Finally, incorporating both subjective and objective measures holds value.
摘要 ------------------------------------- II
Abstract --------------------------------- IV
第一章 緒論 ------------------------------- 01
1.1. 研究背景與動機 ----------------------- 01
1.2. 研究範圍、目的與假設------------------ 03
1.3. 研究架構與流程 ----------------------- 03
第二章 文獻探討 --------------------------- 05
2.1. 選單類型 ---------------------------- 05
2.1.1. 選單深度及廣度 --------------------- 05
2.1.2. 選單介面佈局 ----------------------- 09
2.1.3. 車載資訊系統選單設計的影響 ---------- 10
2.2. 視覺空間工作記憶負荷------------------ 13
2.2.1. 人類訊息處理 ---------------------- 13
2.2.2. 認知負荷 -------------------------- 15
2.3. 眼動行為 ---------------------------- 18
2.3.1. 眼動追蹤與視覺搜尋 ----------------- 18
2.3.2. 眼動分析方式 ---------------------- 19
2.4. 腦波數據 ---------------------------- 20
2.4.1. 大腦區域 -------------------------- 21
2.4.2. 腦波頻段與認知負荷指標 ------------- 21
2.5. 小結 -------------------------------- 22
第三章 研究方法 -------------------------- 24
3.1. 實驗參與者 -------------------------- 24
3.1.1. 招募方式 -------------------------- 24
3.1.2. 分組與招募條件 --------------------- 24
3.2. 實驗設備與環境 ----------------------- 25
3.2.1 實驗材料 --------------------------- 25
3.2.2 眼動儀 ----------------------------- 27
3.2.3 腦波儀 ----------------------------- 28
3.2.4 實驗環境 --------------------------- 30
3.3. 實驗流程 ---------------------------- 32
3.3.1. 測前階段 -------------------------- 34
3.3.2. 學習與練習階段 -------------------- 34
3.3.3. 實驗階段 -------------------------- 36
3.3.4. 問卷階段 ------------------------- 38
3.4. 實驗設計與數據分析 ------------------ 38
3.4.1. 自變項 --------------------------- 38
3.4.2. 應變項 --------------------------- 41
3.5. 統計分析 --------------------------- 43
第四章 結果 ----------------------------- 45
4.1. 作業績效 --------------------------- 45
4.1.1. 選單作業完成率 ------------------- 45
4.1.2. 選單作業平均反應時間 -------------- 48
4.1.3. VSWM 作業正確率 ------------------ 50
4.2. 視覺搜尋效率 ----------------------- 53
4.2.1. 平均凝視時間 --------------------- 53
4.2.2. 凝視次數 ------------------------- 55
4.2.3. 平均掃視時間 ---------------------- 56
4.2.4. 掃視時間大於2.0 秒次數------------- 58
4.3. 認知負荷 --------------------------- 60
4.3.1. NASA-TLX 問卷分數 ---------------- 60
4.3.2. θ波(4-8Hz)平均相對功率值 -------- 63
4.3.3. α波(8-13Hz)平均相對功率值 ------- 65
4.4. 小結 ------------------------------ 69
第五章 討論 ----------------------------- 71
5.1. 選單設計類型的影響 ------------------ 71
5.1.1. 作業績效 ------------------------- 71
5.1.2. 視覺搜尋效率 --------------------- 72
5.2. VSWM 負荷的影響 -------------------- 74
5.2.1. 作業績效 ------------------------- 74
5.2.2. 視覺搜尋效率 --------------------- 75
5.3. 認知負荷 --------------------------- 75
5.3.1. 主觀認知負荷 --------------------- 75
5.3.2. 腦波功率值 ----------------------- 76
5.4. 研究限制 -------------------------- 77
第六章 結論 ---------------------------- 78
參考資料 ------------------------------- 79
附錄一—愛丁堡慣用手傾向量表 -------------- 86
附錄二—選單選項與題目的連結 -------------- 88
附錄三—功能類別與選單選項的連結 ---------- 89
附錄四—NASA-TLX 任務負荷評分量表問卷 ----- 90
1. Agrawal, S., Benedyk, I., Peeta, S. (2022). Development of In-vehicle Information Dissemination Mechanisms to Reduce Cognitive Burden in the Information-rich Driving Environment. Purdue University Research Repository. doi:10.4231/QVDH-1124
2. Birrell, S. A., & Fowkes, M. (2014). Glance behaviours when using an in-vehicle smart driving aid: A real-world, on-road driving study. Transportation research part F: traffic psychology and behaviour, 22, 113-125.
3. Brouwer, A. M., Hogervorst, M. A., Van Erp, J. B., Heffelaar, T., Zimmerman, P. H., & Oostenveld, R. (2012). Estimating workload using EEG spectral power and ERPs in the n-back task. Journal of neural engineering, 9(4), 045008.
4. Brumby, D. P., & Zhuang, S. (2015, April). Visual grouping in menu interfaces. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems (pp. 4203-4206).
5. Burnett, G., Lawson, G., Arhin-Donkor, R. & Kuriyagawa, Y. (2013). Menu hierarchies for in-vehicle user-interfaces: Modelling the depth vs. breadth trade-off. Displays. 34. 241–249. 10.1016/j.displa.2013.07.001
6. Cha, D. W., Park, P. (1997). Simulator-Based Mental Workload Assessment of the In-Vehicle Navigation System Driver Using Revision of NASA-TLX. IE interfaces, 10(1), 145-154.
7. Chen, W., & Liu, W. (2019). HMI Design for Autonomous Cars: Investigating on Driver’s Attention Distribution. In HCI in Mobility, Transport, and Automotive Systems: First International Conference, MobiTAS 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26-31, 2019, Proceedings 21 (pp. 92-102). Springer International Publishing.
8. Chihara, T., Kobayashi, F., & Sakamoto, J. (2020). Evaluation of mental workload during automobile driving using one-class support vector machine with eye movement data. Applied ergonomics, 89, 103201.
9. Chikhi, S., Matton, N., & Blanchet, S. (2022). EEG power spectral measures of cognitive workload: A meta‐analysis. Psychophysiology, 59(6), e14009.
10. Cooper, J. M., Wheatley, C. L., McCarty, M. M., Motzkus, C. J., Lopes, C. L., Erickson, G. G., ... & Strayer, D. L. (2020). Age-related differences in the cognitive, visual, and temporal demands of in-vehicle information systems. Frontiers in psychology, 11, 1154.
11. Dehais, F., Duprès, A., Blum, S., Drougard, N., Scannella, S., Roy, R. N., & Lotte, F. (2019). Monitoring pilot’s mental workload using ERPs and spectral power with a six-dry-electrode EEG system in real flight conditions. Sensors, 19(6), 1324.
12. Dharmasena, S. & Suresh, E. A. (2018). A methodology to analyze road landscape in accident Black-Spots: The case of Southern Expressway, Sri Lanka. International Journal of Architectural Research: ArchNet-IJAR. 12. 347. 10.26687/archnet-ijar.v12i2.1547.
13. Dikablis Glasses 3. (n. d.). Retrieved from Ergoneers 網站. https://ergoneers.com/mobiler-eye-tracker-dikablis-glasses-3/
14. Ding, Y., Cao, Y. & Wang, Y. (2020). Physiological Indicators of Mental Workload in Visual Display Terminal Work. In: Goonetilleke, R., Karwowski, W. (eds) Advances in Physical Ergonomics and Human Factors. AHFE 2019. Advances in Intelligent Systems and Computing, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-030-20142-5_9
15. Engström, J., Johansson, E., & Östlund, J. (2005). Effects of visual and cognitive load in real and simulated motorway driving. Transportation research part F: traffic psychology and behaviour, 8(2), 97-120.
16. Flat vs. Deep Website Hierarchies. (2013). Retrieved from NN/g Nielsen Norman Group網站. https://www.nngroup.com/articles/flat-vs-deep-hierarchy/
17. Ge, Y., Sheng, B., Qu, W., Xiong, Y., Sun, X., & Zhang, K. (2020). Differences in visual-spatial working memory and driving behavior between morning-type and evening-type drivers. Accident Analysis & Prevention, 136, 105402.
18. Gelau, C., Henning, M. J., & Krems, J. F. (2009). On the reliability of the occlusion technique as a tool for the assessment of the HMI of in-vehicle information and communication systems. Applied Ergonomics, 40(2), 181-184.
19. Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical issues in ergonomics science, 4(1-2), 113-131.
20. Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: methods and constructs. International journal of industrial ergonomics, 24(6), 631-645.
21. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). North-Holland.
22. Haslbeck, A., Zimmermann, M., Rothkirch, I., & Lange, C. (2015). Eye-Tracking in Human Factors / Ergonomics Research. 10.13140/RG.2.2.16094.84806.
23. He, D., Donmez, B., Liu, C. C., & Plataniotis, K. N. (2019). High cognitive load assessment in drivers through wireless electroencephalography and the validation of a modified N-back task. IEEE Transactions on Human-Machine Systems, 49(4), 362-371.
24. Hick, W. E. (1952). On the rate of gain of information. Quarterly Journal of experimental psychology, 4(1), 11-26.
25. Horrey, W. J., & Wickens, C. D. (2007). In-vehicle glance duration: distributions, tails, and model of crash risk. Transportation research record, 2018(1), 22-28.
26. Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of experimental psychology, 45(3), 188.
27. ISO 15007 (2020). Road vehicles — Measurement and analysis of driver visual behaviour with respect to transport information and control systems.
28. ISO 16673 (2017) Road vehicles — Ergonomic aspects of transport information and control systems — Occlusion method to assess visual demand due to the use of in-vehicle systems
29. Jacko, J. A., & Salvendy, G. (1996). Hierarchical menu design: Breadth, depth, and task complexity. Perceptual and Motor skills, 82(3_suppl), 1187-1201.
30. Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive psychology, 8(4), 441-480.
31. Klauer, S. G., Dingus, T. A., Neale, V. L., Sudweeks, J. D., & Ramsey, D. J. (2006). The impact of driver inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data (No. DOT HS 810 594). United States. Department of Transportation. National Highway Traffic Safety Administration.
32. Ku, P. S., Lin, Y. C., Peng, Y. H., & Chen, M. Y. (2019). PeriText: Utilizing peripheral vision for reading text on augmented reality smart glasses. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 630-635). IEEE.
33. Kujala, T., & Saariluoma, P. (2011). Effects of menu structure and touch screen scrolling style on the variability of glance durations during in-vehicle visual search tasks. Ergonomics, 54(8), 716-732.
34. Landauer, T. K., & Nachbar, D. W. (1985). Selection from alphabetic and numeric menu trees using a touch screen: breadth, depth, and width. ACM SIGCHI Bulletin, 16(4), 73-78.
35. Lansdown, T. C., Brook-Carter, N., & Kersloot, T. (2004). Distraction from multiple in-vehicle secondary tasks: vehicle performance and mental workload implications. Ergonomics, 47(1), 91-104.
36. Large, D. R., & Burnett, G. (2015, November). An overview of occlusion versus driving simulation for assessing the visual demands of in-vehicle user-interfaces. In International Conference on Driver Distraction and Inattention, 4th.
37. Lee, E., & MacGregor, J. (1985). Minimizing user search time in menu retrieval systems. Human Factors, 27(2), 157-162.
38. Lei, S., & Roetting, M. (2011). Influence of task combination on EEG spectrum modulation for driver workload estimation. Human factors, 53(2), 168-179.
39. Lenneman, J. K., & Backs, R. W. (2009). Cardiac autonomic control during simulated driving with a concurrent verbal working memory task. Human factors, 51(3), 404-418.
40. Leuthold, S., Schmutz, P., Bargas-Avila, J. A., Tuch, A. N., & Opwis, K. (2011). Vertical versus dynamic menus on the world wide web: Eye tracking study measuring the influence of menu design and task complexity on user performance and subjective preference. Computers in human behavior, 27(1), 459-472.
41. Lobo, J. L., Ser, J. D., De Simone, F., Presta, R., Collina, S., & Moravek, Z. (2016, September). Cognitive workload classification using eye-tracking and EEG data. In Proceedings of the international conference on human-computer interaction in aerospace (pp. 1-8).
42. Logie, R. H. (2011). The functional organization and capacity limits of working memory. Current directions in Psychological science, 20(4), 240-245.
43. Ma, J., Li, J., & Gong, Z. (2022). Evaluation of driver distraction from in-vehicle information systems: A simulator study of interaction modes and secondary tasks classes on eight production cars. International Journal of Industrial Ergonomics, 92, 103380.
44. Marquart, G., Cabrall, C., & de Winter, J. (2015). Review of eye-related measures of drivers’ mental workload. Procedia Manufacturing, 3, 2854-2861.
45. McAfoose, J., & Baune, B. T. (2009). Exploring visual–spatial working memory: A critical review of concepts and models. Neuropsychology review, 19, 130-142.
46. Monk, C. A., & Kidd, J. G. (2007, July). R we fooling ourselves: does the occlusion technique shortchange R estimates?. In Driving Assesment Conference (Vol. 4, No. 2007). University of Iowa.
47. NHTSA (2013). Visual-manual NHTSA driver distraction guidelines for in-vehicle electronic devices (pp. 1–117). National Highway Traffic Safety Administration, Report No. NHTSA-2010-0053.
48. Norman, K. L., & Chin, J. P. (1988). The effect of tree structure on search in a hierarchical menu selection system. Behaviour & Information Technology, 7(1), 51-65.
49. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
50. Pauzié, A. (2008). A method to assess the driver mental workload: The driving activity load index (DALI). IET Intelligent Transport Systems, 2(4), 315-322.
51. Purucker, C., Naujoks, F., Prill, A., & Neukum, A. (2017). Evaluating distraction of in-vehicle information systems while driving by predicting total eyes-off-road times with keystroke level modeling. Applied ergonomics, 58, 543-554.
52. Qin, L., Li, Z. R., Chen, Z., Bill, M. A., & Noyce, D. A. (2019). Understanding driver distractions in fatal crashes: An exploratory empirical analysis. Journal of Safety Research, 69, 23-31.
53. Quick-series Manual. (n.d.). Retrieved from CGX 官方網站. https://www.cgxsystems.com/software
54. Ross, V., Jongen, E. M., Wang, W., Brijs, T., Brijs, K., Ruiter, R. A., & Wets, G. (2014). Investigating the influence of working memory capacity when driving behavior is combined with cognitive load: An LCT study of young novice drivers. Accident Analysis & Prevention, 62, 377-387.
55. Sanders, M. S., & McCormick, E. J. (1993). Human factors in system design. Human Factors in Engineering and Design, seventh ed. McGraw-Hill, Singapore, 726-745.
56. Savage, S. W., Potter, D. D., & Tatler, B. W. (2013). Does preoccupation impair hazard perception? A simultaneous EEG and eye tracking study. Transportation research part F: traffic psychology and behaviour, 17, 52-62.
57. Scharinger, C., Prislan, L., Bernecker, K., & Ninaus, M. (2023). Gamification of an n-back working memory task–Is it worth the effort? An EEG and eye-tracking study. Biological Psychology, 179, 108545.
58. Seidler, K. S., & Wickens, C. D. (1992). Distance and organization in multifunction displays. Human Factors, 34(5), 555-569.
59. Slavic, A., Salah, A. A., Davies, S., & UDC Consortium. (2013). Classification & visualization: interfaces to knowledge: proceedings of the International UDC Seminar 24-25 October 2013, The Hague, The Netherlands. (No Title).
60. Stevens, A., Quimby, A., Board, A., Kersloot, T., & Burns, P. (2002). Design guidelines for safety of in-vehicle information systems. TRL Limited.
61. Stewart, T. (2022). Overview of motor vehicle crashes in 2020 (No. DOT HS 813 266).
62. Teplan, M. (2002). Fundamentals of EEG measurement. Measurement science review, 2(2), 1-11.
63. Teyeme, Y., Malengier, B., Tesfaye, T., Ciesielska-Wrobel, I., Haji Musa, A. B., & Van Langenhove, L. (2021). A review of contemporary techniques for measuring ergonomic wear comfort of protective and sport clothing. Autex Research Journal, 21(1), 32-44.
64. Underwood, G., Ngai, A., & Underwood, J. (2013). Driving experience and situation awareness in hazard detection. Safety science, 56, 29-35.
65. von Janczewski, N., Wittmann, J., Engeln, A., Baumann, M., & Krauß, L. (2021). A meta-analysis of the n-back task while driving and its effects on cognitive workload. Transportation research part F: traffic psychology and behaviour, 76, 269-285.
66. Wallace, D. F., Anderson, N. S., & Shneiderman, B. (1987, September). Time stress effects on two menu selection systems. In Proceedings of the Human Factors Society Annual Meeting (Vol. 31, No. 7, pp. 727-731). Sage CA: Los Angeles, CA: SAGE Publications.
67. Wang, Q., Yang, S., Liu, M., Cao, Z., & Ma, Q. (2014). An eye-tracking study of website complexity from cognitive load perspective. Decision support systems, 62, 1-10.
68. Wickens, C. D. (2002). Multiple resources and performance prediction. Theoretical issues in ergonomics science, 3(2), 159-177.
69. Wickens, C. D. (2014). Effort in human factors performance and decision making. Human Factors, 56(8), 1329-1336.
70. Wickens, C. D., Hollands, J. G., Banbury, S., & Parasuraman, R. (2013). Engineering Psychology and Human Performance (4th ed.). Psychology Press.
71. Wierwille, W. W. (1993). Demands on driver resources associated with introducing advanced technology into the vehicle. Transportation Research Part C: Emerging Technologies, 1(2), 133-142.
72. Wierwille, W. W., & Tijerina, L. (1998). Modelling the relationship between driver in-vehicle visual demans and accident occurrence. Vision in vehicles, 6, 233-243.
73. Yang, Y., McDonald, M., & Zheng, P. (2012). Can drivers' eye movements be used to monitor their performance? A case study. IET Intelligent Transport Systems, 6(4), 444-452.
74. Zarantonello, L., Schiff, S., Amodio, P., & Bisiacchi, P. (2020). The effect of age, educational level, gender and cognitive reserve on visuospatial working memory performance across adult life span. Aging, Neuropsychology, and Cognition, 27(2), 302-319.
75. Zhang, M., Hou, G., & Chen, Y. C. (2022). Effects of interface layout design on mobile learning efficiency: a comparison of interface layouts for mobile learning platform. Library Hi Tech, (ahead-of-print).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *