帳號:guest(3.128.95.199)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥碩
作者(外文):Chen, Yan-Shuo
論文名稱(中文):以模擬最佳化求解具退化衝擊相依與可靠度限制的維修保養策略
論文名稱(外文):Optimal Maintenance Policy with Degradation-Shock Dependence and Reliability Constraint Using Simulation Optimization
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):林義貴
吳建瑋
口試委員(外文):Lin, Yi-Kuei
Wu, Chien-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:110034568
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:65
中文關鍵詞:以可靠度為中心的維修退化隨機衝擊不完美維修模擬最佳化
外文關鍵詞:Reliability-Centered MaintenanceDegradationRandom ShockImperfect MaintenanceSimulation Optimization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著人口上升,需求不斷增加,機台設備需長時間不停的運作,停機成本也逐漸增加,因此如何以最低的損失進行有效的維修保養變得越來越重要。以可靠性為中心的維修(Reliability-Centered Maintenance, RCM)意旨針對機台設備的失效模式在一定的可靠度限制下找出最小的維修成本,機台設備受到的失效模式可分為兩種,因機台設備本身使用造成的退化為軟失效,以及受到外部衝擊造成的硬失效,並且軟失效和硬失效可能會互相影響,意即機台設備受到外部衝擊會加速使用的退化程度,並且外部衝擊隨著次數的增加也會更加容易故障。在考慮不同工作站、機台設備的系統下,一旦任一機台設備退化程度超過預定的閥值時,不完美維修和完美維修的維修保養動作將被執行。為了找出最佳維修保養策略的閥值,建立了一個新的啟發式演算法,此方法以Imperialist Competitive Algorithm (ICA)為基礎,結合Jaya Algorithm以及適應性懲罰函數進行求解,並透過實證分析證實本研究提出的模型和演算法能夠以最少的計算資源獲得最佳的維修保養策略。
As the population rises and demand continues to increase, machine needs to be in constant operation for a long time cause downtime costs is gradually increasing. How to implement effective maintenance with minimum losses is more and more important. Reliability-Centered Maintenance (RCM) means against the failure mode of the machine to find out the minimum maintenance cost under a certain reliability limit. The failure mode of the machine can be distinguished into two types: soft failure caused by the use of machine itself and hard failure caused by external shock. The soft failure and hard failure may affect each other, meaning that the degradation of machine will be accelerated by external shock. Moreover, external impacts are more likely to cause malfunctions as the number of occurrences increases. Considering the different workstations and machines in a system, once the degradation of any machine exceeds the predetermined threshold, maintenance actions for imperfect and perfect will be performed. In order to find the threshold of the optimal maintenance strategy, a new heuristic algorithm is developed for solving the problem. This algorithm is based on Imperialist Competitive Algorithm, combined with Jaya Algorithm and adaptive penalty function. Empirical analysis shows that the proposed model and the algorithm can achieve optimal maintenance strategies with minimal computational resources.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VI
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3論文架構 3
第二章 文獻回顧 6
2.1維修保養背景和影響因子 6
2.2維修保養的最佳化求解方法 12
第三章 數學模型 16
3.1 符號定義 16
3.2 問題定義 18
3.2.1 機台的硬失效退化程度 19
3.2.2 機台的軟失效退化程度 21
3.2.3 維修保養策略 22
3.2.4 維修保養程度 24
3.2.5 維修保養之假設 24
3.3 維修保養數學模型 25
第四章 求解方法 27
4.1 可靠度衡量 28
4.1.1 單一機台可靠度衡量 28
4.1.2 系統可靠度衡量 28
4.2帝國競爭演算法 31
4.3 Jaya演算法 34
4.4 適應性懲罰函數 36
4.5 本研究提出之演算法 37
第五章 實證分析 41
5.1 案例研究 41
5.1.1 簡單系統案例研究 41
5.1.2 複雜系統案例研究 48
5.2 敏感度分析 54
第六章 結論與未來展望 58
參考文獻 59

Abdallah, B., Benyssaad, Y., Mohamed, D., Benaissa, B., and Benabdellah, Y. (2021). Maintenance Optimization for Complex System using Evolutionary Algorithms under Reliability Constraints within the Context of the Reliability-Centered-Maintenance. International Journal of Performability Engineering, 17(1).
Alaswad, S., and Xiang, Y. (2017). A review on condition-based maintenance optimization models for stochastically deteriorating system. Reliability Engineering & System Safety, 157, 54-63.
Atashpaz-Gargari, E., and Lucas, C. (2007, September). Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE Congress on Evolutionary Computation (pp. 4661-4667). IEEE.
Bukhsh, Z. A., Stipanovic, I., Saeed, A., & Doree, A. G. (2020). Maintenance intervention predictions using entity-embedding neural networks. Automation in Construction, 116, 103202.
Cai, Z., Si, S., Liu, Y., and Zhao, J. (2017). Maintenance optimization of continuous state systems based on performance improvement. IEEE Transactions on Reliability, 67(2), 651-665.
Carson, Y., and Maria, A. (1997, December). Simulation optimization: methods and
applications. In Proceedings of the 29th Conference on Winter Simulation (pp. 118-126).
Chang, M., Huang, X., Coolen, F. P., & Coolen-Maturi, T. (2021). Reliability analysis for systems based on degradation rates and hard failure thresholds changing with degradation levels. Reliability Engineering & System Safety, 216, 108007.
Chang, K. H., Hong, L. J., and Wan, H. (2013). Stochastic trust-region response-surface method (STRONG)—A new response-surface framework for simulation optimization. INFORMS Journal on Computing, 25(2), 230-243.
Chen, N., Ye, Z. S., Xiang, Y., and Zhang, L. (2015). Condition-based maintenance using the inverse Gaussian degradation model. European Journal of Operational Research, 243(1), 190-199.
de Jonge, B. (2019). Discretizing continuous-time continuous-state deterioration processes, with an application to condition-based maintenance optimization. Reliability Engineering and System Safety, 188, 1–5.
Ding, S. H., and Kamaruddin, S. (2015). Maintenance policy optimization—literature review and directions. The International Journal of Advanced Manufacturing Technology, 76(5), 1263-1283.
Duan, C., Deng, C., Gharaei, A., Wu, J., and Wang, B. (2018). Selective maintenance scheduling under stochastic maintenance quality with multiple maintenance actions. International Journal of Production Research, 56(23), 7160-7178.
Fang, G., Pan, R., and Wang, Y. (2022). Inverse Gaussian processes with correlated random effects for multivariate degradation modeling. European Journal of Operational Research, 300(3), 1177-1193.
Gaur, V., Yadav, O. P., Soni, G., and Rathore, A. P. S. (2021). A literature review on network reliability analysis and its engineering applications. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 235(2), 167-181.
Hao, S., & Yang, J. (2018). Reliability analysis for dependent competing failure processes with changing degradation rate and hard failure threshold levels. Computers & Industrial Engineering, 118, 340-351.
Hosseini, S., and Al Khaled, A. (2014). A survey on the imperialist competitive algorithm metaheuristic: implementation in engineering domain and directions for future research. Applied Soft Computing, 24, 1078-1094.
Hu, J., Sun, Q., and Ye, Z. S. (2020a). Condition-based maintenance planning for systems subject to dependent soft and hard failures. IEEE Transactions on Reliability, 70(4), 1468-1480.
Hu, J., Shen, J., and Shen, L. (2020b). Opportunistic maintenance for two-component series systems subject to dependent degradation and shock. Reliability Engineering & System Safety, 201, 106995.
Huynh, K. T. (2021). An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process. Reliability Engineering & System Safety, 213, 107695.
Igder, M. A., Rafiei, M., Boudjadar, J., and Khooban, M. H. (2020). Reliability and safety improvement of emission-free ships: Systemic reliability-centered maintenance. IEEE Transactions on Transportation Electrification, 7(1), 256-266.
Keizer, M. C. O., Flapper, S. D. P., and Teunter, R. H. (2017). Condition-based maintenance policies for systems with multiple dependent components: A review. European Journal of Operational Research, 261(2), 405-420.
Keizer, M. C. O., Teunter, R. H., and Veldman, J. (2017). Joint condition-based maintenance and inventory optimization for systems with multiple components. European Journal of Operational Research, 257(1), 209-222.
Khorshidi, H. A., and Nikfalazar, S. (2015). Comparing two meta-heuristic approaches for solving complex system reliability optimization. Applied and Computational Mathematics, 4(2-1), 1-6.
Rafiee, K., Feng, Q., & Coit, D. W. (2017). Reliability analysis and condition‐based maintenance for failure processes with degradation‐dependent hard failure threshold. Quality and Reliability Engineering International, 33(7), 1351-1366.
Lu, X. Q., Yan, H. F., Su, Z. L., Zhang, M. X., Yang, X. H., and Ling, H. F. (2020). Metaheuristics for homogeneous and heterogeneous machine utilization planning under reliability-centered maintenance. Computers & Industrial Engineering, 151, 106934.
Mancuso, A., Compare, M., Salo, A., & Zio, E. (2021). Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems. Reliability Engineering & System Safety, 210, 107536.
Olde Keizer, M. C., S. D. P. Flapper, and R. H. Teunter (2017a). Condition-based maintenance policies for systems with multiple dependent components: A review. European Journal of Operational Research, 261(2), 405-420.
Olde Keizer, M. C. A., R. H. Teunter, and J. Veldman (2017b). Joint condition-based maintenance and inventory optimization for systems with multiple components. European Journal of Operational Research, 257(1), 209–222.
Pham, H., and Wang, H. (1996). Imperfect maintenance. European Journal of Operational Research, 94(3), 425-438.
Peng, H., Feng, Q., and Coit, D. W. (2010). Reliability and maintenance modeling for systems subject to multiple dependent competing failure processes. IIE Transactions, 43(1), 12-22.
Rafiee, K., Feng, Q., and Coit, D. W. (2015). Condition-based maintenance for repairable deteriorating systems subject to a generalized mixed shock model. IEEE Transactions on Reliability, 64(4), 1164-1174.
Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1), 19-34.
Shafiee, M., Finkelstein, M., and Bérenguer, C. (2015). An opportunistic condition-based maintenance policy for offshore wind turbine blades subjected to degradation and environmental shocks. Reliability Engineering & System Safety, 142, 463-471.
Tessema, B., and Yen, G. G. (2009). An adaptive penalty formulation for constrained evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 39(3), 565-578.
Van Horenbeek, A., and Pintelon, L. (2013). A dynamic predictive maintenance policy for complex multi-component systems. Reliability Engineering & System Safety, 120, 39-50.
Wu, S., and Castro, I. T. (2020). Maintenance policy for a system with a weighted linear combination of degradation processes. European Journal of Operational Research, 280(1), 124-133.
Yahyatabar, A., and Najafi, A. A. (2018). Condition based maintenance policy for series-parallel systems through Proportional Hazards Model: A multi-stage stochastic programming approach. Computers & Industrial Engineering, 126, 30-46.
Yang, L., Zhao, Y., Peng, R., and Ma, X. (2018). Hybrid preventive maintenance of competing failures under random environment. Reliability Engineering & System Safety, 174, 130-140.
Zakikhani, K., Nasiri, F., and Zayed, T. (2020). Availability-based reliability-centered maintenance planning for gas transmission pipelines. International Journal of Pressure Vessels and Piping, 183, 104105.
Zhang, N., Fouladirad, M., Barros, A., and Zhang, J. (2020). Condition-based maintenance for a K-out-of-N deteriorating system under periodic inspection with failure dependence. European Journal of Operational Research, 287(1), 159-167.
Zhang, X., H. Liao, J. Zeng, G. Shi, and B. Zhao (2021). Optimal condition-based opportunistic maintenance and spare parts provisioning for a two-unit system using a state space partitioning approach. Reliability Engineering and System Safety, 209, 107451.
Zhao, C., Zhang, H., Fan, C., Gao, Z., and Zhu, X. (2020, October). Maintenance scheduling of semiconductor production equipment based on particle swarm optimization. In 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS) (pp. 436-439). IEEE.
Zhou, H., Wang, S., Qi, F., and Gao, S. (2022). Maintenance modeling and operation parameters optimization for complex production line under reliability constraints. Annals of Operations Research, 311(1), 507-523.
Zonta, T., da Costa, C. A., Zeiser, F. A., de Oliveira Ramos, G., Kunst, R., & da Rosa Righi, R. (2022). A predictive maintenance model for optimizing production schedule using deep neural networks. Journal of Manufacturing Systems, 62, 450-462
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *