帳號:guest(3.140.195.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳庚鼎
作者(外文):Chen, Neil K.T.
論文名稱(中文):運用AI文字探勘探索先進車聯網通訊技術發展與專利佈局
論文名稱(外文):Using AI text mining approaches to explore and discover advanced tele-communication technologies and patent landscape for enabling smart transportation
指導教授(中文):張瑞芬
指導教授(外文):Trappey, Amy J. C.
口試委員(中文):李國安
朱曉萍
口試委員(外文):Li, Kuo-An
Ju, Shiau-Ping
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:110034552
出版年(民國):113
畢業學年度:111
語文別:中文
論文頁數:81
中文關鍵詞:車聯網專利分析文字探勘圖注意力網路技術分析網路分析
外文關鍵詞:Tech-miningPatent analysisV2XText miningGraph Attention NetworkNetwork Analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:197
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
智慧運輸系統是許多國家積極發展的領域,我國的政策中也透漏對於智慧交通的重視,本研究將聚焦在智慧交通中的車聯網(Vehicle-to-everything, V2X),透過分析車聯網專利來了解目前的市場技術走向,結合Beyond 5G (B5G)的核心技術用以呈現車聯網與B5G網路的統整性發展。研究利用文字探勘技術對車聯網專利進行知識管理以及商業化技術分析,加入機器學習來協助分析台灣產業現況。首先對專利進行關鍵字萃取和主題模型,進行初步的主題探勘,再藉由專利的引用關係建構出專利引用網路,利用圖注意力網路(Graph Attention Network, GAT)來聚合上述資訊,得到可用於分析車聯網專利主題的神經網路。後續分析中結合分群、關鍵字以及社群網路分析指標,以車聯網為主體來分析B5G中與其相關的技術重要性,後續會蒐集原始資料集以外的台灣相關技術專利,使用圖注意力網路預測專利主題,分析全球與台灣之間的技術發展差異。本研究方法可以提取全球專利中的核心研發技術,並分析特定領域的組成技術,協助廠商於車聯網技術領域上的研發策略擬定,優化研究時程並能夠快速呈現出國家之間的技術研發方向不同之處。
Intelligent transportation system (ITS) is a popular research field around the world. It can be shown from our country’s policies to understand the importance of smart transportation. This research focuses on the domain of Vehicle-to-everything (V2X) in ITS, understanding the current technology trend by analyzing the related patents. it integrates core technologies of Beyond 5G (B5G) to present a comprehensive development of V2X and B5G networks. Text mining technology is the main methodology to process the collected patents and does comprehensive knowledge management. The machine learning method is added to analyze current industry in Taiwan. The preliminary topic exploration and ontology construction with keyword extraction and topic modeling for collected patents. Using Graph Attention Network (GAT) to aggregate the patent information shown above. In the following analyze, we will collect related technology patents in Taiwan, use the graph attention network to predict the technical field of patents, and analyze the differences between global and Taiwan development. The proposed methodology in this study enables the extraction of core research and development technologies from global patents. It also facilitates the analysis of constituent technologies within specific domains. This assists industry stakeholders in formulating research and development strategies in the field of vehicle-to-everything (V2X) technology, optimizing research timelines, and providing a prompt depiction of divergent technological research directions among countries.
摘要 i
Abstract ii
圖目錄 v
表目錄 vii
壹、緒論 1
1.1研究背景 1
1.2研究目的 2
1.3研究架構 3
壹、 文獻回顧 4
2.1 關鍵字萃取 4
2.2 主題模型與分群演算法 5
2.3 本體論工程 8
2.4 文獻計量科學 9
2.5 圖學習與圖神經網路 10
2.6 社群網路分析 12
參、方法論 14
3.1建構本體及制定搜索策略 15
3.2關鍵字萃取 24
3.3主題模型 25
3.4建構專利引用模型 26
3.5圖注意力網路模型訓練 28
3.6分群 32
3.7技術分析 33
肆、分析結果 36
4.1全球車聯網技術宏觀分析 36
4.2專利文字探勘分析 40
4.3專利文字探勘驗證 60
伍、結論 68
參考文獻 71
附錄 78

1. Abboud, K., Omar, H. A., & Zhuang, W. (2016). Interworking of DSRC and cellular network technologies for V2X communications: A survey. IEEE transactions on vehicular technology, 65(12), 9457-9470.
2. Abduljabbar, R. L., & Dia, H. (2021). A Bibliometric Overview of IEEE Transactions on Intelligent Transportation Systems (2000-2021). IEEE Transactions on Intelligent Transportation Systems.
3. Agarwal, A., Durairajanayagam, D., Tatagari, S., Esteves, S. C., Harlev, A., Henkel, R., Roychoudhury, S., Homa, S., Puchalt, N. G., & Ramasamy, R. (2016). Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian journal of andrology, 18(2), 296.
4. Agrawal, D. P., & Zeng, Q.-A. (2015). Introduction to wireless and mobile systems. Cengage learning.
5. Ampornphan, P., & Tongngam, S. (2020). Exploring technology influencers from patent data using association rule mining and social network analysis. Information, 11(6), 333.
6. Bharti, S. K., & Babu, K. S. (2017). Automatic keyword extraction for text summarization: A survey. arXiv preprint arXiv:1704.03242.
7. Björnson, E., & Larsson, E. G. (2018). How energy-efficient can a wireless communication system become? 2018 52nd Asilomar Conference on Signals, Systems, and Computers,
8. Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science.
9. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022.
10. Bonner, S., Kureshi, I., Brennan, J., Theodoropoulos, G., McGough, A. S., & Obara, B. (2019). Exploring the semantic content of unsupervised graph embeddings: An empirical study. Data Science and Engineering, 4(3), 269-289.
11. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7), 107-117.
12. Callon, M., Courtial, J.-P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social science information, 22(2), 191-235.
13. Chang, S.-B., Lai, K.-K., & Chang, S.-M. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. Technological Forecasting and Social Change, 76(1), 107-117.
14. Cho, T. S., & Shih, H. Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008. Scientometrics, 89(3), 795-811.
15. Choi, H., & Woo, J. (2022). Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model. Applied Energy, 313, 118898.
16. Cummings, D., & Nassar, M. (2020). Structured citation trend prediction using graph neural networks. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
17. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K., Stavroulaki, V., Lu, J., Xiong, C., & Yao, J. (2013). 5G on the horizon: Key challenges for the radio-access network. IEEE vehicular technology magazine, 8(3), 47-53.
18. Derwent Innovation, Clarivate. https://www.derwentinnovation.com/login/, (2023), (accessed several times from 2022 to 2023).
19. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
20. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296.
21. Dumais, S. T. (2004). Latent semantic analysis. Annu. Rev. Inf. Sci. Technol., 38(1), 188-230.
22. ERTICO. (2022). ERTICO-Annual-Review-2021-2022. Retrieved from https://ertico.com/wp-content/uploads/2023/01/ERTICO-Annual-Review-2021-2022.pdf
23. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. kdd,
24. Fellbaum, C. (2010). WordNet. In Theory and applications of ontology: computer applications (pp. 231-243). Springer.
25. Feng, L., Niu, Y., Liu, Z., Wang, J., & Zhang, K. (2019). Discovering technology opportunity by keyword-based patent analysis: a hybrid approach of morphology analysis and USIT. Sustainability, 12(1), 136.
26. Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428.
27. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks, 1(3), 215-239.
28. Gallagher, R. J., Reing, K., Kale, D., & Ver Steeg, G. (2017). Anchored correlation explanation: Topic modeling with minimal domain knowledge. Transactions of the Association for Computational Linguistics, 5, 529-542.
29. Garcia, M. H. C., Molina-Galan, A., Boban, M., Gozalvez, J., Coll-Perales, B., Şahin, T., & Kousaridas, A. (2021). A tutorial on 5G NR V2X communications. IEEE Communications Surveys & Tutorials, 23(3), 1972-2026.
30. Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., & Tang, J. (2021). Utilizing graph machine learning within drug discovery and development. Briefings in bioinformatics, 22(6), bbab159.
31. Genesereth, M. R., & Nilsson, N. J. (2012). Logical foundations of artificial intelligence. Morgan Kaufmann.
32. Glänzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69-115.
33. Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794.
34. Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
35. Guerrero-Ibáñez, J., Zeadally, S., & Contreras-Castillo, J. (2018). Sensor technologies for intelligent transportation systems. Sensors, 18(4), 1212.
36. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
37. Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artifical Intelligence and Machine Learning, 14(3), 1-159.
38. He, X., & Niyogi, P. (2003). Locality preserving projections. Advances in neural information processing systems, 16.
39. Hung, B. T. (2022). Link Prediction in Paper Citation Network based on Deep Graph Convolutional Neural Network. In Computer Networks, Big Data and IoT (pp. 897-907). Springer.
40. Intelligent Transportations Systems Joint Program Office. (2020). ITS Strategic Plan 2020-2025. Retrieved from https://www.its.dot.gov/stratplan2020/index.htm
41. Jeong, Y., & Yoon, B. (2015). Development of patent roadmap based on technology roadmap by analyzing patterns of patent development. Technovation, 39, 37-52.
42. Ji, B., Zhang, X., Mumtaz, S., Han, C., Li, C., Wen, H., & Wang, D. (2020). Survey on the internet of vehicles: Network architectures and applications. IEEE Communications Standards Magazine, 4(1), 34-41.
43. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254.
44. Jones, D., Bench-Capon, T., & Visser, P. (1998). Methodologies for ontology development.
45. Jones, K. S. (1973). Index term weighting. Information storage and retrieval, 9(11), 619-633.
46. Joung, J., & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114, 281-292.
47. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
48. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604-632.
49. Kondrak, G. (2005). N-gram similarity and distance. International symposium on string processing and information retrieval,
50. Lee, C.-S., Jian, Z.-W., & Huang, L.-K. (2005). A fuzzy ontology and its application to news summarization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(5), 859-880.
51. Liu, J., Ren, J., Zheng, W., Chi, L., Lee, I., & Xia, F. (2020a). Web of scholars: A scholar knowledge graph. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,
52. Liu, Z., Lee, H., Khyam, M. O., He, J., Pesch, D., Moessner, K., Saad, W., & Poor, H. V. (2020b). 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities. arXiv preprint arXiv:2012.07753.
53. Lin, Y., Wang, P., & Ma, M. (2017, May). Intelligent transportation system (ITS): Concept, challenge and opportunity. In 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids) (pp. 167-172). IEEE.
54. Lozano Dominguez, J. M., & Mateo Sanguino, T. J. (2019). Review on V2X, I2X, and P2X communications and their applications: a comprehensive analysis over time. Sensors, 19(12), 2756.
55. Madhulatha, T. S. (2012). An overview on clustering methods. arXiv preprint arXiv:1205.1117.
56. Mao, Y. (2021). Analyzing the current status of global 5G research from the perspective of bibliometrics. Journal of Physics: Conference Series,
57. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26.
58. Mohammed, N. A., Mansoor, A. M., & Ahmad, R. B. (2019). Mission-critical machine-type communication: An overview and perspectives towards 5G. IEEE access, 7, 127198-127216.
59. Momeni, A., & Rost, K. (2016). Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling. Technological Forecasting and Social Change, 104, 16-29.
60. Moreno, J. L. (1953). Who shall survive? Foundations of sociometry, group psychotherapy and socio-drama.
61. Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167-256.
62. Nguyen, V.-G., Brunstrom, A., Grinnemo, K.-J., & Taheri, J. (2017). SDN/NFV-based mobile packet core network architectures: A survey. IEEE Communications Surveys & Tutorials, 19(3), 1567-1602.
63. Ning, Z., Huang, J., & Wang, X. (2019). Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Communications, 26(1), 87-93.
64. Oliveira, M., & Gama, J. (2012). An overview of social network analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2), 99-115.
65. Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web.
66. Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
67. Petri, M., Moffat, A., & Wirth, A. (2014). Graph representations and applications of citation networks. Proceedings of the 2014 Australasian Document Computing Symposium,
68. Pozar, D. M. (2011). Microwave engineering. John wiley & sons.
69. Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084.
70. Rose, R. C., & Paul, D. B. (1990). A hidden Markov model based keyword recognition system. International Conference on Acoustics, Speech, and Signal Processing,
71. Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581-603.
72. Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620.
73. Scheuermann, A., & Leukel, J. (2014). Supply chain management ontology from an ontology engineering perspective. Computers in Industry, 65(6), 913-923.
74. Sharma, P., & Li, Y. (2019). Self-supervised contextual keyword and keyphrase retrieval with self-labelling.
75. Shrestha, R., Nam, S. Y., Bajracharya, R., & Kim, S. (2020). Evolution of V2X communication and integration of blockchain for security enhancements. Electronics, 9(9), 1338.
76. Soo, V.-W., Lin, S.-Y., Yang, S.-Y., Lin, S.-N., & Cheng, S.-L. (2006). A cooperative multi-agent platform for invention based on patent document analysis and ontology. Expert Systems with Applications, 31(4), 766-775.
77. Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering techniques.
78. Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data & knowledge engineering, 25(1-2), 161-197.
79. Swarnamugi, M., & Chinnaiyan, R. (2019). Smart and reliable transportation system based on message queuing telemetry transport protocol. 2019 International Conference on Intelligent Computing and Control Systems (ICCS),
80. Tanuja, K., Sushma, T., Bharathi, M., & Arun, K. (2015). A survey on VANET technologies.
81. Trappey, A. J., Trappey, C., Wang, W., & Hsieh, H. (2018). Patent analysis of key technologies for smart retailing and their projected economic impact. 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)),
82. Trappey, A. J., Wei, A. Y., Chen, N. K., Li, K.-A., Hung, L., & Trappey, C. V. (2023). Patent landscape and key technology interaction roadmap using graph convolutional network–Case of mobile communication technologies beyond 5G. Journal of informetrics, 17(1), 101354.
83. United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022, Online Edition, Retrieved in 2022, 10 16, from https://population.un.org/wpp/Download/Standard/MostUsed/.
84. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
85. Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). Deep graph infomax. ICLR (Poster), 2(3), 4.
86. Ver Steeg, G., & Galstyan, A. (2014). Discovering structure in high-dimensional data through correlation explanation. Advances in neural information processing systems, 27.
87. Wang, B., Chen, C., & Zhang, T. (2021). Commercial vehicle road collaborative system based on 5G-V2X and satellite navigation technologies. China Satellite Navigation Conference (CSNC 2021) Proceedings,
88. Wang, X., Qiao, Y., Hou, Y., Zhang, S., & Han, X. (2019). Measuring technology complementarity between enterprises with an hLDA topic model. IEEE Transactions on Engineering Management, 68(5), 1309-1320.
89. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications.
90. World Intellectual Property Organization. (2022a). WIPO Pearl. Retrieved from https://wipopearl.wipo.int/en/conceptmap
91. World Intellectual Property Organization. (2022b). WIPO Pearl - User Guide. Retrieved from https://www.wipo.int/reference/en/wipopearl/guide.html
92. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-24.
93. Xia, F., Sun, K., Yu, S., Aziz, A., Wan, L., Pan, S., & Liu, H. (2021). Graph learning: A survey. IEEE Transactions on Artificial Intelligence, 2(2), 109-127.
94. Yu, X., & Zhang, B. (2019). Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning. Technological Forecasting and Social Change, 145, 273-283.
95. Yun, J., & Geum, Y. (2020). Automated classification of patents: A topic modeling approach. Computers & Industrial Engineering, 147, 106636.
96. Zeydan, E., Turk, Y., Aksoy, B., & Tasbag, Y. Y. (2022). Post-quantum era in V2X security: Convergence of orchestration and parallel computation. IEEE Communications Standards Magazine, 6(1), 76-82.
97. Zhang, K., Xu, H., Tang, J., & Li, J. (2006). Keyword extraction using support vector machine. international conference on web-age information management,
98. Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An end-to-end deep learning architecture for graph classification. Proceedings of the AAAI conference on artificial intelligence,
99. 中國信息通信研究院. (2023). 車聯網白皮書. Retrieved from http://www.caict.ac.cn/kxyj/qwfb/bps/202301/t20230107_413791.htm
100. 智慧運輸系統發展建設計畫—改變未來交通移動力。 2020年 08 月 12 日,取自:行政院重要政策:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/2ae9fc87-fd14-424b-97ab-c71e6440410d
(此全文20260626後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *