|
1. Abboud, K., Omar, H. A., & Zhuang, W. (2016). Interworking of DSRC and cellular network technologies for V2X communications: A survey. IEEE transactions on vehicular technology, 65(12), 9457-9470. 2. Abduljabbar, R. L., & Dia, H. (2021). A Bibliometric Overview of IEEE Transactions on Intelligent Transportation Systems (2000-2021). IEEE Transactions on Intelligent Transportation Systems. 3. Agarwal, A., Durairajanayagam, D., Tatagari, S., Esteves, S. C., Harlev, A., Henkel, R., Roychoudhury, S., Homa, S., Puchalt, N. G., & Ramasamy, R. (2016). Bibliometrics: tracking research impact by selecting the appropriate metrics. Asian journal of andrology, 18(2), 296. 4. Agrawal, D. P., & Zeng, Q.-A. (2015). Introduction to wireless and mobile systems. Cengage learning. 5. Ampornphan, P., & Tongngam, S. (2020). Exploring technology influencers from patent data using association rule mining and social network analysis. Information, 11(6), 333. 6. Bharti, S. K., & Babu, K. S. (2017). Automatic keyword extraction for text summarization: A survey. arXiv preprint arXiv:1704.03242. 7. Björnson, E., & Larsson, E. G. (2018). How energy-efficient can a wireless communication system become? 2018 52nd Asilomar Conference on Signals, Systems, and Computers, 8. Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. 9. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine Learning research, 3(Jan), 993-1022. 10. Bonner, S., Kureshi, I., Brennan, J., Theodoropoulos, G., McGough, A. S., & Obara, B. (2019). Exploring the semantic content of unsupervised graph embeddings: An empirical study. Data Science and Engineering, 4(3), 269-289. 11. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems, 30(1-7), 107-117. 12. Callon, M., Courtial, J.-P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social science information, 22(2), 191-235. 13. Chang, S.-B., Lai, K.-K., & Chang, S.-M. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. Technological Forecasting and Social Change, 76(1), 107-117. 14. Cho, T. S., & Shih, H. Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997–2008. Scientometrics, 89(3), 795-811. 15. Choi, H., & Woo, J. (2022). Investigating emerging hydrogen technology topics and comparing national level technological focus: Patent analysis using a structural topic model. Applied Energy, 313, 118898. 16. Cummings, D., & Nassar, M. (2020). Structured citation trend prediction using graph neural networks. ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 17. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K., Stavroulaki, V., Lu, J., Xiong, C., & Yao, J. (2013). 5G on the horizon: Key challenges for the radio-access network. IEEE vehicular technology magazine, 8(3), 47-53. 18. Derwent Innovation, Clarivate. https://www.derwentinnovation.com/login/, (2023), (accessed several times from 2022 to 2023). 19. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 20. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. 21. Dumais, S. T. (2004). Latent semantic analysis. Annu. Rev. Inf. Sci. Technol., 38(1), 188-230. 22. ERTICO. (2022). ERTICO-Annual-Review-2021-2022. Retrieved from https://ertico.com/wp-content/uploads/2023/01/ERTICO-Annual-Review-2021-2022.pdf 23. Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. kdd, 24. Fellbaum, C. (2010). WordNet. In Theory and applications of ontology: computer applications (pp. 231-243). Springer. 25. Feng, L., Niu, Y., Liu, Z., Wang, J., & Zhang, K. (2019). Discovering technology opportunity by keyword-based patent analysis: a hybrid approach of morphology analysis and USIT. Sustainability, 12(1), 136. 26. Fey, M., & Lenssen, J. E. (2019). Fast graph representation learning with PyTorch Geometric. arXiv preprint arXiv:1903.02428. 27. Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks, 1(3), 215-239. 28. Gallagher, R. J., Reing, K., Kale, D., & Ver Steeg, G. (2017). Anchored correlation explanation: Topic modeling with minimal domain knowledge. Transactions of the Association for Computational Linguistics, 5, 529-542. 29. Garcia, M. H. C., Molina-Galan, A., Boban, M., Gozalvez, J., Coll-Perales, B., Şahin, T., & Kousaridas, A. (2021). A tutorial on 5G NR V2X communications. IEEE Communications Surveys & Tutorials, 23(3), 1972-2026. 30. Gaudelet, T., Day, B., Jamasb, A. R., Soman, J., Regep, C., Liu, G., Hayter, J. B., Vickers, R., Roberts, C., & Tang, J. (2021). Utilizing graph machine learning within drug discovery and development. Briefings in bioinformatics, 22(6), bbab159. 31. Genesereth, M. R., & Nilsson, N. J. (2012). Logical foundations of artificial intelligence. Morgan Kaufmann. 32. Glänzel, W. (2001). National characteristics in international scientific co-authorship relations. Scientometrics, 51(1), 69-115. 33. Grootendorst, M. (2022). BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv preprint arXiv:2203.05794. 34. Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, 35. Guerrero-Ibáñez, J., Zeadally, S., & Contreras-Castillo, J. (2018). Sensor technologies for intelligent transportation systems. Sensors, 18(4), 1212. 36. Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30. 37. Hamilton, W. L. (2020). Graph representation learning. Synthesis Lectures on Artifical Intelligence and Machine Learning, 14(3), 1-159. 38. He, X., & Niyogi, P. (2003). Locality preserving projections. Advances in neural information processing systems, 16. 39. Hung, B. T. (2022). Link Prediction in Paper Citation Network based on Deep Graph Convolutional Neural Network. In Computer Networks, Big Data and IoT (pp. 897-907). Springer. 40. Intelligent Transportations Systems Joint Program Office. (2020). ITS Strategic Plan 2020-2025. Retrieved from https://www.its.dot.gov/stratplan2020/index.htm 41. Jeong, Y., & Yoon, B. (2015). Development of patent roadmap based on technology roadmap by analyzing patterns of patent development. Technovation, 39, 37-52. 42. Ji, B., Zhang, X., Mumtaz, S., Han, C., Li, C., Wen, H., & Wang, D. (2020). Survey on the internet of vehicles: Network architectures and applications. IEEE Communications Standards Magazine, 4(1), 34-41. 43. Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32(3), 241-254. 44. Jones, D., Bench-Capon, T., & Visser, P. (1998). Methodologies for ontology development. 45. Jones, K. S. (1973). Index term weighting. Information storage and retrieval, 9(11), 619-633. 46. Joung, J., & Kim, K. (2017). Monitoring emerging technologies for technology planning using technical keyword based analysis from patent data. Technological Forecasting and Social Change, 114, 281-292. 47. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. 48. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM (JACM), 46(5), 604-632. 49. Kondrak, G. (2005). N-gram similarity and distance. International symposium on string processing and information retrieval, 50. Lee, C.-S., Jian, Z.-W., & Huang, L.-K. (2005). A fuzzy ontology and its application to news summarization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 35(5), 859-880. 51. Liu, J., Ren, J., Zheng, W., Chi, L., Lee, I., & Xia, F. (2020a). Web of scholars: A scholar knowledge graph. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 52. Liu, Z., Lee, H., Khyam, M. O., He, J., Pesch, D., Moessner, K., Saad, W., & Poor, H. V. (2020b). 6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities. arXiv preprint arXiv:2012.07753. 53. Lin, Y., Wang, P., & Ma, M. (2017, May). Intelligent transportation system (ITS): Concept, challenge and opportunity. In 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids) (pp. 167-172). IEEE. 54. Lozano Dominguez, J. M., & Mateo Sanguino, T. J. (2019). Review on V2X, I2X, and P2X communications and their applications: a comprehensive analysis over time. Sensors, 19(12), 2756. 55. Madhulatha, T. S. (2012). An overview on clustering methods. arXiv preprint arXiv:1205.1117. 56. Mao, Y. (2021). Analyzing the current status of global 5G research from the perspective of bibliometrics. Journal of Physics: Conference Series, 57. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Advances in neural information processing systems, 26. 58. Mohammed, N. A., Mansoor, A. M., & Ahmad, R. B. (2019). Mission-critical machine-type communication: An overview and perspectives towards 5G. IEEE access, 7, 127198-127216. 59. Momeni, A., & Rost, K. (2016). Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling. Technological Forecasting and Social Change, 104, 16-29. 60. Moreno, J. L. (1953). Who shall survive? Foundations of sociometry, group psychotherapy and socio-drama. 61. Newman, M. E. (2003). The structure and function of complex networks. SIAM review, 45(2), 167-256. 62. Nguyen, V.-G., Brunstrom, A., Grinnemo, K.-J., & Taheri, J. (2017). SDN/NFV-based mobile packet core network architectures: A survey. IEEE Communications Surveys & Tutorials, 19(3), 1567-1602. 63. Ning, Z., Huang, J., & Wang, X. (2019). Vehicular fog computing: Enabling real-time traffic management for smart cities. IEEE Wireless Communications, 26(1), 87-93. 64. Oliveira, M., & Gama, J. (2012). An overview of social network analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2), 99-115. 65. Page, L., Brin, S., Motwani, R., & Winograd, T. (1999). The PageRank citation ranking: Bringing order to the web. 66. Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 67. Petri, M., Moffat, A., & Wirth, A. (2014). Graph representations and applications of citation networks. Proceedings of the 2014 Australasian Document Computing Symposium, 68. Pozar, D. M. (2011). Microwave engineering. John wiley & sons. 69. Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084. 70. Rose, R. C., & Paul, D. B. (1990). A hidden Markov model based keyword recognition system. International Conference on Acoustics, Speech, and Signal Processing, 71. Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581-603. 72. Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620. 73. Scheuermann, A., & Leukel, J. (2014). Supply chain management ontology from an ontology engineering perspective. Computers in Industry, 65(6), 913-923. 74. Sharma, P., & Li, Y. (2019). Self-supervised contextual keyword and keyphrase retrieval with self-labelling. 75. Shrestha, R., Nam, S. Y., Bajracharya, R., & Kim, S. (2020). Evolution of V2X communication and integration of blockchain for security enhancements. Electronics, 9(9), 1338. 76. Soo, V.-W., Lin, S.-Y., Yang, S.-Y., Lin, S.-N., & Cheng, S.-L. (2006). A cooperative multi-agent platform for invention based on patent document analysis and ontology. Expert Systems with Applications, 31(4), 766-775. 77. Steinbach, M., Karypis, G., & Kumar, V. (2000). A comparison of document clustering techniques. 78. Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: principles and methods. Data & knowledge engineering, 25(1-2), 161-197. 79. Swarnamugi, M., & Chinnaiyan, R. (2019). Smart and reliable transportation system based on message queuing telemetry transport protocol. 2019 International Conference on Intelligent Computing and Control Systems (ICCS), 80. Tanuja, K., Sushma, T., Bharathi, M., & Arun, K. (2015). A survey on VANET technologies. 81. Trappey, A. J., Trappey, C., Wang, W., & Hsieh, H. (2018). Patent analysis of key technologies for smart retailing and their projected economic impact. 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)), 82. Trappey, A. J., Wei, A. Y., Chen, N. K., Li, K.-A., Hung, L., & Trappey, C. V. (2023). Patent landscape and key technology interaction roadmap using graph convolutional network–Case of mobile communication technologies beyond 5G. Journal of informetrics, 17(1), 101354. 83. United Nations, Department of Economic and Social Affairs, Population Division (2022). World Population Prospects 2022, Online Edition, Retrieved in 2022, 10 16, from https://population.un.org/wpp/Download/Standard/MostUsed/. 84. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. 85. Velickovic, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio, Y., & Hjelm, R. D. (2019). Deep graph infomax. ICLR (Poster), 2(3), 4. 86. Ver Steeg, G., & Galstyan, A. (2014). Discovering structure in high-dimensional data through correlation explanation. Advances in neural information processing systems, 27. 87. Wang, B., Chen, C., & Zhang, T. (2021). Commercial vehicle road collaborative system based on 5G-V2X and satellite navigation technologies. China Satellite Navigation Conference (CSNC 2021) Proceedings, 88. Wang, X., Qiao, Y., Hou, Y., Zhang, S., & Han, X. (2019). Measuring technology complementarity between enterprises with an hLDA topic model. IEEE Transactions on Engineering Management, 68(5), 1309-1320. 89. Wasserman, S., & Faust, K. (1994). Social network analysis: Methods and applications. 90. World Intellectual Property Organization. (2022a). WIPO Pearl. Retrieved from https://wipopearl.wipo.int/en/conceptmap 91. World Intellectual Property Organization. (2022b). WIPO Pearl - User Guide. Retrieved from https://www.wipo.int/reference/en/wipopearl/guide.html 92. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1), 4-24. 93. Xia, F., Sun, K., Yu, S., Aziz, A., Wan, L., Pan, S., & Liu, H. (2021). Graph learning: A survey. IEEE Transactions on Artificial Intelligence, 2(2), 109-127. 94. Yu, X., & Zhang, B. (2019). Obtaining advantages from technology revolution: A patent roadmap for competition analysis and strategy planning. Technological Forecasting and Social Change, 145, 273-283. 95. Yun, J., & Geum, Y. (2020). Automated classification of patents: A topic modeling approach. Computers & Industrial Engineering, 147, 106636. 96. Zeydan, E., Turk, Y., Aksoy, B., & Tasbag, Y. Y. (2022). Post-quantum era in V2X security: Convergence of orchestration and parallel computation. IEEE Communications Standards Magazine, 6(1), 76-82. 97. Zhang, K., Xu, H., Tang, J., & Li, J. (2006). Keyword extraction using support vector machine. international conference on web-age information management, 98. Zhang, M., Cui, Z., Neumann, M., & Chen, Y. (2018). An end-to-end deep learning architecture for graph classification. Proceedings of the AAAI conference on artificial intelligence, 99. 中國信息通信研究院. (2023). 車聯網白皮書. Retrieved from http://www.caict.ac.cn/kxyj/qwfb/bps/202301/t20230107_413791.htm 100. 智慧運輸系統發展建設計畫—改變未來交通移動力。 2020年 08 月 12 日,取自:行政院重要政策:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/2ae9fc87-fd14-424b-97ab-c71e6440410d
|