|
國家災害防救科技中心. 民生示警公開資料平台 https://alerts.ncdr.nat.gov.tw/calamityAlertSearch_history.aspx
淡江大學. (2020). 整合物聯網監測資料與機器學習技術建置智慧城市淹水預報系統. 台灣: 經濟部水利署 Retrieved from https://www.itdr.tw/dispPageBox/getFile/GetView.aspx?FileLocation=PJ-SITEVC%5CFiles%5CPrjFiles%5C68%5C&FileFullName=%E5%85%A8%E6%96%87%E5%A0%B1%E5%91%8A.pdf&FileName=FR5739108054Ga1jm.PDF
Adnan, R. M., Liang, Z., Trajkovic, S., Zounemat-Kermani, M., Li, B., & Kisi, O. (2019). Daily streamflow prediction using optimally pruned extreme learning machine. Journal of Hydrology, 577, 123981.
Alfieri, L., Salamon, P., Pappenberger, F., Wetterhall, F., & Thielen, J. (2012). Operational early warning systems for water-related hazards in Europe. Environmental Science & Policy, 21, 35-49.
Chen, C.-Y., Lin, L.-Y., Yu, F.-C., Lee, C.-S., Tseng, C.-C., Wang, A.-H., & Cheung, K.-W. (2007). Improving debris flow monitoring in Taiwan by using high-resolution rainfall products from QPESUMS. Natural hazards, 40(2), 447-461.
Chen, C., Jiang, J., Liao, Z., Zhou, Y., Wang, H., & Pei, Q. (2022). A short-term flood prediction based on spatial deep learning network: A case study for Xi County, China. Journal of Hydrology, 607, 127535.
Dembélé, M., Hrachowitz, M., Savenije, H. H., Mariéthoz, G., & Schaefli, B. (2020). Improving the predictive skill of a distributed hydrological model by calibration on spatial patterns with multiple satellite data sets. Water Resources Research, 56(1), e2019WR026085.
Ding, Y., Zhu, Y., Feng, J., Zhang, P., & Cheng, Z. (2020). Interpretable spatio-temporal attention LSTM model for flood forecasting. Neurocomputing, 403, 348-359.
Ghaeini, R., Fern, X. Z., & Tadepalli, P. (2018). Interpreting recurrent and attention-based neural models: a case study on natural language inference. arXiv preprint arXiv:1808.03894.
Haile, A. T., Tefera, F. T., & Rientjes, T. (2016). Flood forecasting in Niger-Benue basin using satellite and quantitative precipitation forecast data. International journal of applied earth observation and geoinformation, 52, 475-484.
Hu, J., & Zheng, W. (2020). Multistage attention network for multivariate time series prediction. Neurocomputing, 383, 122-137.
Kao, I.-F., Zhou, Y., Chang, L.-C., & Chang, F.-J. (2020). Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583, 124631.
Liao, K.-H., Le, T. A., & Van Nguyen, K. (2016). Urban design principles for flood resilience: Learning from the ecological wisdom of living with floods in the Vietnamese Mekong Delta. Landscape and Urban Planning, 155, 69-78.
Liu, J., Xu, L., & Chen, N. (2022a). A spatiotemporal deep learning model ST-LSTM-SA for hourly rainfall forecasting using radar echo images. Journal of Hydrology, 609, 127748.
Liu, J., Yuan, X., Zeng, J., Jiao, Y., Li, Y., Zhong, L., & Yao, L. (2022b). Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning. Hydrology and Earth System Sciences, 26(2), 265-278.
Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.
Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
Merkuryeva, G., Merkuryev, Y., Sokolov, B. V., Potryasaev, S., Zelentsov, V. A., & Lektauers, A. (2015). Advanced river flood monitoring, modelling and forecasting. Journal of computational science, 10, 77-85.
Miau, S., & Hung, W.-H. (2020). River flooding forecasting and anomaly detection based on deep learning. IEEE Access, 8, 198384-198402.
Mishra, K., & Sinha, R. (2020). Flood risk assessment in the Kosi megafan using multi-criteria decision analysis: A hydro-geomorphic approach. Geomorphology, 350, 106861.
Motta, M., de Castro Neto, M., & Sarmento, P. (2021). A mixed approach for urban flood prediction using Machine Learning and GIS. International Journal of Disaster Risk Reduction, 56, 102154.
Mourato, S., Fernandez, P., Marques, F., Rocha, A., & Pereira, L. (2021). An interactive Web-GIS fluvial flood forecast and alert system in operation in Portugal. International Journal of Disaster Risk Reduction, 58, 102201.
Nam, D. H., Mai, D. T., Udo, K., & Mano, A. (2014). Short‐term flood inundation prediction using hydrologic‐hydraulic models forced with downscaled rainfall from global NWP. Hydrological Processes, 28(24), 5844-5859.
Nazir, H. M., Hussain, I., Faisal, M., Elashkar, E. E., & Shoukry, A. M. (2019). Improving the prediction accuracy of river inflow using two data pre-processing techniques coupled with data-driven model. PeerJ, 7, e8043.
Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of deep learning. Neurocomputing, 452, 48-62.
Nyrup, R., & Robinson, D. (2022). Explanatory pragmatism: a context-sensitive framework for explainable medical AI. Ethics and information technology, 24(1), 13.
Park, S., & Yang, J.-S. (2022). Interpretable deep learning LSTM model for intelligent economic decision-making. Knowledge-Based Systems, 248, 108907.
Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen, S.-C., & Iyengar, S. S. (2018). A survey on deep learning: Algorithms, techniques, and applications. ACM Computing Surveys (CSUR), 51(5), 1-36.
Rözer, V., Peche, A., Berkhahn, S., Feng, Y., Fuchs, L., Graf, T., Haberlandt, U., Kreibich, H., Sämann, R., & Sester, M. (2021). Impact‐based forecasting for pluvial floods. Earth's Future, 9(2), 2020EF001851.
Teunissen, P. (2007). Least-squares prediction in linear models with integer unknowns. Journal of Geodesy, 81(9), 565-579.
Tian, X., Schleiss, M., Bouwens, C., & van de Giesen, N. (2019). Critical rainfall thresholds for urban pluvial flooding inferred from citizen observations. Science of The Total Environment, 689, 258-268.
UNDRR and WMO. (2022). Global status of multi-hazard early warning systems: Target G. United Nations Office for Disaster Risk Reduction: Geneva, Switzerland.
Wang, H., Zhao, Y., Zhou, Y., & Wang, H. (2021). Prediction of urban water accumulation points and water accumulation process based on machine learning. Earth Science Informatics, 14, 2317-2328.
Wang, Y., Li, C., Liu, M., Cui, Q., Wang, H., Jianshu, L., Li, B., Xiong, Z., & Hu, Y. (2022). Spatial characteristics and driving factors of urban flooding in Chinese megacities. Journal of Hydrology, 613, 128464.
Wei, J., Hang, R., & Luo, J.-J. (2022). Prediction of Pan-Arctic Sea Ice Using Attention-Based LSTM Neural Networks. Frontiers in Marine Science, 918.
Wu, Z., Zhou, Y., Wang, H., & Jiang, Z. (2020). Depth prediction of urban flood under different rainfall return periods based on deep learning and data warehouse. Science of The Total Environment, 716, 137077.
Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., & Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. International conference on machine learning, 2048-2057. PMLR.
Xu, Y., Hu, C., Wu, Q., Jian, S., Li, Z., Chen, Y., Zhang, G., Zhang, Z., & Wang, S. (2022). Research on particle swarm optimization in LSTM neural networks for rainfall-runoff simulation. Journal of Hydrology, 608, 127553.
Yan, C., Tu, Y., Wang, X., Zhang, Y., Hao, X., Zhang, Y., & Dai, Q. (2019). STAT: Spatial-temporal attention mechanism for video captioning. IEEE transactions on multimedia, 22(1), 229-241.
Yang, Z.-b., Zhang, J.-p., Zhao, Z.-b., Zhai, Z., & Chen, X.-f. (2020). Interpreting network knowledge with attention mechanism for bearing fault diagnosis. Applied Soft Computing, 97, 106829.
Yaseen, Z. M., Kisi, O., & Demir, V. (2016). Enhancing long-term streamflow forecasting and predicting using periodicity data component: application of artificial intelligence. Water resources management, 30(12), 4125-4151.
Yu, W., Nakakita, E., Kim, S., & Yamaguchi, K. (2015). Improvement of rainfall and flood forecasts by blending ensemble NWP rainfall with radar prediction considering orographic rainfall. Journal of Hydrology, 531, 494-507.
Zhai, M., Xiang, X., Zhang, R., Lv, N., & El Saddik, A. (2019). Optical flow estimation using channel attention mechanism and dilated convolutional neural networks. Neurocomputing, 368, 124-132.
Zhang, S., & Pan, B. (2014). An urban storm-inundation simulation method based on GIS. Journal of Hydrology, 517, 260-268.
Zhou, Q., Leng, G., Su, J., & Ren, Y. (2019). Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Science of The Total Environment, 658, 24-33.
|