|
[1] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3, 1157-1182. [2] Witten, I. H., & Frank, E. (2002). Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Record, 31(1), 76-77. [3] Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data classification: Algorithms and applications, 37. [4] Polikar, R. (2012). Ensemble learning. Ensemble machine learning: Methods and applications, 1-34. [5] Breiman, L. (2001). Random forests. Machine learning, 45, 5-32. [6] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. [7] Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63, 3-42. [8] Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785-794). [9] Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial intelligence, 97(1-2), 245-271. [10] Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(1-4), 131-156. [11] Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial intelligence, 97(1-2), 273-324. [12] Yang, Y., & Pedersen, J. O. (1997, July). A comparative study on feature selection in text categorization. In International Conference on Machine Learning (Vol. 97, No. 412-420, p. 35). [13] Rui, Y., Huang, T. S., & Chang, S. F. (1999). Image retrieval: Current techniques, promising directions, and open issues. Journal of visual communication and image representation, 10(1), 39-62. [14] Jović, A., Brkić, K., & Bogunović, N. (2015, May). A review of feature selection methods with applications. In 2015 38th international convention on information and communication technology, electronics and microelectronics (MIPRO) (pp. 1200-1205). IEEE. [15] Hoque, N., Bhattacharyya, D. K., & Kalita, J. K. (2014). MIFS-ND: A mutual information-based feature selection method. Expert Systems with Applications, 41(14), 6371-6385. [16] Liu, H., & Setiono, R. (1996, July). A probabilistic approach to feature selection-a filter solution. In International Conference on Machine Learning (Vol. 96, pp. 319-327). [17] Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data classification: Algorithms and applications, 37. [18] Robnik-Šikonja, M., & Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF. Machine learning, 53, 23-69. [19] Alelyani, S., Tang, J., & Liu, H. (2018). Feature selection for clustering: A review. Data Clustering, 29-60. [20] Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine learning, 46, 389-422. [21] Narendra, P. M., & Fukunaga, K. (1977). A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers, 26(09), 917-922. [22] Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys (CSUR), 50(6), 1-45. [23] Sandri, M., & Zuccolotto, P. (2006). Variable selection using random forests. In Data Analysis, Classification and the Forward Search: Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, University of Parma, June 6–8, 2005 (pp. 263-270). Springer Berlin Heidelberg. [24] Cawley, G., Talbot, N., & Girolami, M. (2006). Sparse multinomial logistic regression via bayesian l1 regularisation. Advances in neural information processing systems, 19. [25] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288. [26] Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. [27] Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320. [28] Zhu, J., Rosset, S., Tibshirani, R., & Hastie, T. (2003). 1-norm support vector machines. Advances in neural information processing systems, 16. [29] Xu, Z., Huang, G., Weinberger, K. Q., & Zheng, A. X. (2014, August). Gradient boosted feature selection. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 522-531). [30] Hara, S., & Maehara, T. (2017, February). Enumerate lasso solutions for feature selection. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1). [31] Mu, X., Lu, J., Watta, P., & Hassoun, M. H. (2009, June). Weighted voting-based ensemble classifiers with application to human face recognition and voice recognition. In 2009 International Joint Conference on Neural Networks (pp. 2168-2171). IEEE. [32] Kim, Y., & Sohn, S. Y. (2012). Stock fraud detection using peer group analysis. Expert Systems with Applications, 39(10), 8986-8992. [33] Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems?. The Journal of Machine Learning Research, 15(1), 3133-3181. [34] Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. [35] Freund, Y., & Schapire, R. E. (1996, July). Experiments with a new boosting algorithm. In International Conference on Machine Learning (Vol. 96, pp. 148-156). [36] Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259. [37] Pirbazari, A. M., Chakravorty, A., & Rong, C. (2019, February). Evaluating feature selection methods for short-term load forecasting. In 2019 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 1-8). IEEE. [38] Otchere, D. A., Ganat, T. O. A., Ojero, J. O., Tackie-Otoo, B. N., & Taki, M. Y. (2022). Application of gradient boosting regression model for the evaluation of feature selection techniques in improving reservoir characterisation predictions. Journal of Petroleum Science and Engineering, 208, 109244. [39] Jing, X., Zou, Q., Yan, J., Dong, Y., & Li, B. (2022). Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm. Remote Sensing, 14(3), 756. [40] Banga, A., Ahuja, R., & Sharma, S. C. (2021). Performance analysis of regression algorithms and feature selection techniques to predict PM 2.5 in smart cities. International Journal of System Assurance Engineering and Management, 1-14. [41] Luo, M., Wang, Y., Xie, Y., Zhou, L., Qiao, J., Qiu, S., & Sun, Y. (2021). Combination of feature selection and catboost for prediction: The first application to the estimation of aboveground biomass. Forests, 12(2), 216. [42] Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. [43] Schapire, R. E. (2013). Explaining adaboost. Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, 37-52. [44] Ying, C., Qi-Guang, M., Jia-Chen, L., & Lin, G. (2013). Advance and prospects of AdaBoost algorithm. Acta Automatica Sinica, 39(6), 745-758. [45] Touzani, S., Granderson, J., & Fernandes, S. (2018). Gradient boosting machine for modeling the energy consumption of commercial buildings. Energy and Buildings, 158, 1533-1543. [46] Wang, S., Dong, P., & Tian, Y. (2017). A novel method of statistical line loss estimation for distribution feeders based on feeder cluster and modified XGBoost. Energies, 10(12), 2067. [47] Dorogush, A. V., Ershov, V., & Gulin, A. (2018). CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363. [48] Bakhareva, N., Shukhman, A., Matveev, A., Polezhaev, P., Ushakov, Y., & Legashev, L. (2019, September). Attack detection in enterprise networks by machine learning methods. In 2019 international Russian automation conference (RusAutoCon) (pp. 1-6). IEEE. [49] Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. (2018). CatBoost: unbiased boosting with categorical features. Advances in Neural Information Processing Systems, 31. [50] Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., ... & Zhou, H. (2019). Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029-1041. [51] Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of Big Data, 7(1), 1-45. [52] Xia, Y., He, L., Li, Y., Liu, N., & Ding, Y. (2020). Predicting loan default in peer‐to‐peer lending using narrative data. Journal of Forecasting, 39(2), 260-280. [53] Diao, L., Niu, D., Zang, Z., & Chen, C. (2019, July). Short-term weather forecast based on wavelet denoising and catboost. In 2019 Chinese control conference (CCC) (pp. 3760-3764). IEEE. [54] Fan, J., Wang, X., Zhang, F., Ma, X., & Wu, L. (2020). Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data. Journal of Cleaner Production, 248, 119264. [55] Bouckaert, R. R. (2003, August). Choosing between two learning algorithms based on calibrated tests. In Proceedings of the Twentieth International Conference on International Conference on Machine Learning (pp. 51-58). [56] Vanwinckelen, G., Blockeel, H., De Baets, B., Manderick, B., Rademaker, M., & Waegeman, W. (2012, January). On estimating model accuracy with repeated cross-validation. In BeneLearn 2012: Proceedings of the 21st Belgian-Dutch conference on machine learning (pp. 39-44). [57] Kim, J. H. (2009). Estimating classification error rate: Repeated cross-validation, repeated hold-out and bootstrap. Computational Statistics & Data Analysis, 53(11), 3735-3745. [58] Tang, J., Liu, F., Zou, Y., Zhang, W., & Wang, Y. (2017). An improved fuzzy neural network for traffic speed prediction considering periodic characteristic. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2340-2350. [59] Chen, T. T., & Lee, S. J. (2015). A weighted LS-SVM based learning system for time series forecasting. Information Sciences, 299, 99-116. [60] Asuncion, A., & Newman, D. (2007). UCI machine learning repository. [61] Tsanas, Athanasios and Xifara, Angeliki. (2012). Energy efficiency. UCI Machine Learning Repository. https://doi.org/10.24432/C51307. [62] Penrose, K. W., Nelson, A. G., & Fisher, A. G. (1985). Generalized body composition prediction equation for men using simple measurement techniques. Medicine & Science in Sports & Exercise, 17(2), 189.
|