帳號:guest(18.226.88.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘又禎
作者(外文):Pan, Yow-Jen
論文名稱(中文):大規模地震下的避難所選址及人口緊急疏散規劃最佳化
論文名稱(外文):Optimization of Shelter Location and Emergency Evacuation Planning for Large-Scale Earthquakes
指導教授(中文):張國浩
指導教授(外文):Chang, Kuo-Hao
口試委員(中文):張子瑩
柯孝勳
口試委員(外文):Chang, Tzu-Yin
Ke, Hsiao-Hsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:110034523
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:49
中文關鍵詞:疏散模擬模擬最佳化避難所選址兩階段隨機規劃
外文關鍵詞:Evacuation simulationSimulation optimizationShelter site locationTwo-stage stochastic programming
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
地震發生的時間難以預測,在數分鐘內即可造成大規模的災害,因其突發性,易造成民眾恐慌而無法進行有效的災害疏散,因此地震疏散規劃有其必要性。考量地震發生後,路網損壞、坍塌的隨機性及人口流速變動,本研究提出一個提出了一個兩階段隨機整數規劃模型(Two-Stage Stochastic Integer Programming Model),在災後路網(道路損壞情形)隨機的情況下,進行避難所選址及人口疏散規劃,並考量地震帶來的災害衝擊,以避難所開設成本、超過避難所容量會有的懲罰成本及疏散時間延長對災民造成的剝奪成本及受困成本作為衡量指標,以模擬最佳化求解。本研究透過基於代理人的災後行人疏散模擬模型(Agent-Based Pedestrian Evacuation Model),考量到行人具自主性及避難過程中的心理狀態,模擬出災後避難者動態疏散情形及路線,以進行疏散情形分析及成本估算。要找出最佳選址及指派決策需透過演算法求解,本研究先用最佳指派之族群漸進學習法(Population-Based Incremental Learning for Optimal Assignment, PBIL-OA)進行求解,得到隨機路網中最佳的分區人口指派規劃,並結合最佳模擬預算分配法(Optimal Computing Budget Allocation, OCBA)節省所需模擬次數,並用快速選址篩選法(Rapid Location Screening Procedure)在每次迭代過程中篩選並留下表現較好的選址及指派解。本研究的成果可用在疏散策略擬訂,提供權衡下的避難位址開設選項及明確的疏散路線建議,使災民疏散更有效率且總傷亡最小化。在實證研究中,本研究以台北市大安區進行個案分析,與大安區原本開設的18個避難所進行比較,本研究的選址指派決策為開設16個避難所,相較於原有的避難所配置及啟發式演算法求得的指派,提供了更強大的避難所選址和路徑規劃方案,也提高了避難所的有效利用率,可以供決策者參考和應用於制定疏散策略。
It’s unpredictable to know when an earthquake occurs, and it can cause large-scale disasters at short notice. Because of its contingencies, it is possible that people get panicked and thus leads to an ineffective disaster evacuation. Therefore, the thorough earthquake evacuation planning is necessary. Considering the randomness and the different flow rate in roads after the disaster, this study proposes a two-stage stochastic integer programming model to select shelter site locations and evacuees’ evacuation assignment in the case of random road network (road damage) after the disaster. Considering the impact of the disaster caused by the earthquake, taking the cost of open shelters and the deprivation cost of the evacuees caused by the elapsed evacuation time as the measurement metrics, the problem can be solved by simulation optimization. In the research, rapid location screening procedure is used to screen and retain better location-allocation solutions in each iteration, combined the algorithm with optimal computing budget allocation (OCBA) to save required simulation times. The results of the study can be used in the formulation of evacuation strategies, and can provide options for opening shelter sites and clear suggestions for evacuation routes under trade-offs, so as to make the evacuation more efficient and hence minimize total casualties.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 2
1.3論文架構 3
第二章 文獻回顧 4
2.1避難所選址及疏散指派相關文獻 4
2.2兩階段隨機模型 5
2.3行人模擬疏散模型 6
第三章 問題定義 7
3.1問題假設 7
3.2符號定義 7
3.3模型建構 9
第四章 研究方法 11
4.1路網情境生成 11
4.2災後行人疏散模擬模型 13
4.2.1模型初始化 13
4.2.2避難者行為 14
4.3研究方法 15
4.3.1快速選址篩選法(Rapid Location Screening Procedure) 16
4.3.2最佳指派之族群漸進學習法(Population-Based Incremental Learning for Optimal Assignment, PBIL-OA) 19
第五章 個案實驗 23
5.1數值設定 24
5.2疏散成本分析 26
5.3各里別風險程度分析 29
5.4疏散指派及避難所收容人數分析 30
第六章 統計分析 32
6.1二因子實驗設計 32
6.2 各因子組合疏散分析 34
6.2.1道路損壞係數為低水準且人口密度係數為高水準時統計分析 34
6.2.2道路損壞係數為高水準且人口密度係數為低水準時統計分析 37
6.2.3道路損壞係數為高水準且人口密度係數為高水準時統計分析 40
第七章 結論 44
參考文獻 46

李洋寧、劉淑燕、李沁妍、吳佳容、鄧敏政、柯孝勳、李中生(2014)。大臺北地區大規模地震衝擊情境分析報告II :道路系統、水電設施、重要設施、情境綜整。NCDR 102-T15。國家災害防救科技中心。
Abdelghany, A., Abdelghany, K., Mahmassani, H., & Alhalabi, W. (2014). Modeling framework for optimal evacuation of large-scale crowded pedestrian facilities. European Journal of Operational Research, 237(3), 1105-1118.
Alçada‐Almeida, L., Tralhão, L., Santos, L., & Coutinho‐Rodrigues, J. (2009). A multiobjective approach to locate emergency shelters and identify evacuation routes in urban areas. Geographical analysis, 41(1), 9-29.
Alam, M. J., Habib, M. A., & Pothier, E. (2021). Shelter locations in evacuation: A Multiple Criteria Evaluation combined with flood risk and traffic microsimulation modeling. International Journal of Disaster Risk Reduction, 53, 102016.
Asano, M., Sumalee, A., Kuwahara, M., & Tanaka, S. (2007). Dynamic cell transmission–based pedestrian model with multidirectional flows and strategic route choices. Transportation Research Record, 2039(1), 42-49.
Baluja, S. (1994). Population-based incremental learning. a method for integrating genetic search based function optimization and competitive learning. Carnegie-Mellon Univ Pittsburgh Pa Dept Of Computer Science.
Cai, Y., Li, T., Zhang, Y., & Zhang, X. (2022). A simulation-optimization approach for supporting conservative water allocation under uncertainties. Journal of Environmental Management, 315, 115073.
Chan, W. K. V., Son, Y.-J., & Macal, C. M. (2010, December). Agent-based simulation tutorial-simulation of emergent behavior and differences between agent-based simulation and discrete-event simulation. In Proceedings of the 2010 winter simulation conference, (pp. 135-150). IEEE.
Chang, K.-H., Wu, Y.-Z., & Ke, S.-S. (2022). A simulation-based decision support tool for dynamic post-disaster pedestrian evacuation. Decision Support Systems, 157, 113743.
Chen, C.-H., He, D., & Fu, M. (2006). Efficient dynamic simulation allocation in ordinal optimization. IEEE Transactions on Automatic Control, 51(12), 2005-2009.
Chen, C.-H., & Lee, L. H. (2011). Stochastic simulation optimization: an optimal computing budget allocation (Vol. 1). World scientific.
Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4), 269-287.
Daskin, M. S., & Maass, K. L. (2015). The p-median problem. In Location science (pp. 21-45). Cham: Springer International Publishing.
FEMA, U. S. (2022). Hazus Earthquake Model Technical Manual (Hazus 5.1). Washington, D.C. Retrieved from https://www.fema.gov/sites/default/files/documents/fema_hazus-earthquake-model-technical-manual-5-1.pdf
Grass, E., & Fischer, K. (2016). Two-stage stochastic programming in disaster management: A literature survey. Surveys in Operations Research and Management Science, 21(2), 85-100.
Kılcı, F., Kara, B. Y., & Bozkaya, B. (2015). Locating temporary shelter areas after an earthquake: A case for Turkey. European Journal of Operational Research, 243(1), 323-332.
Li, A. C., Nozick, L., Xu, N., & Davidson, R. (2012). Shelter location and transportation planning under hurricane conditions. Transportation Research Part E: Logistics and Transportation Review, 48(4), 715-729.
Morishita, H., Mizuguchi, R., Kanai, J., & Baba, T. (2019). Motion and speed of the frail elderly during evacuation process. Journal of Japan Society for Natural Disaster Science, 37(4), 397-406.
Noyan, N. (2012). Risk-averse two-stage stochastic programming with an application to disaster management. Computers & Operations Research, 39(3), 541-559.
Oksuz, M. K., & Satoglu, S. I. (2020). A two-stage stochastic model for location planning of temporary medical centers for disaster response. International Journal of Disaster Risk Reduction, 44, 101426.
Ozbay, E., Çavuş, Ö., & Kara, B. Y. (2019). Shelter site location under multi-hazard scenarios. Computers & Operations Research, 106, 102-118.
Paul, J. A., & Zhang, M. (2019). Supply location and transportation planning for hurricanes: A two-stage stochastic programming framework. European journal of operational research, 274(1), 108-125.
Ribino, P., Cossentino, M., Lodato, C., & Lopes, S. (2018). Agent-based simulation study for improving logistic warehouse performance. Journal of Simulation, 12(1), 23-41.
Tak, S., Kim, S., & Yeo, H. (2018). Agent-based pedestrian cell transmission model for evacuation. Transportmetrica A: transport science, 14(5-6), 484-502.
Tsai, S. C. (2013). Rapid screening procedures for zero-one optimization via simulation. Informs Journal on Computing, 25(2), 317-331.
Verma, A., & Gaukler, G. M. (2015). Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches. Computers & Operations Research, 62, 197-209.
Wang, X. J., & Paul, J. A. (2020). Robust optimization for hurricane preparedness. International Journal of Production Economics, 221, 107464.
Yang, S., & Yao, X. (2005). Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft computing, 9(11), 815-834.
Yen, J. Y. (1971). Finding the k shortest loopless paths in a network. management Science, 17(11), 712-716.
Yin, Y., Zhao, X., & Lv, W. (2022). Emergency shelter allocation planning technology for large-scale evacuation based on quantum genetic algorithm. Frontiers in public health, 10.
Zhang, N., & Alipour, A. (2023). A stochastic programming approach to enhance the resilience of infrastructure under weather‐related risk. Computer‐Aided Civil and Infrastructure Engineering, 38(4), 411-432.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *