帳號:guest(3.138.135.109)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梅立暘
作者(外文):Mei, Li-Yang
論文名稱(中文):空腔流場中固體之受力與流場之分析
論文名稱(外文):Aerodynamic forces and moments on solid objects in a cavity flow
指導教授(中文):張敬
指導教授(外文):Chang, Ching
口試委員(中文):林昭安
廖川傑
口試委員(外文):Lin, Chao-An
Liao, Chuan-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033648
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:72
中文關鍵詞:空腔流場固體受力有限體積法障礙物受力分析力矩分析流場分析
外文關鍵詞:CavityFlowobsticleFVMForceAnalysisMomentAnalysisFlowFieldAnalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:133
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
空腔流場(cavity flow)為流場分析中一個相當重要的領域,其中在航空方面,則可以應用在投放飛彈或干擾彈上面。本篇論文旨在分析二維與三維空腔流場中,不同形狀之障礙物的受力與能量分布情形,其形狀包含圓形、正方形以及三角形,三維流場方面則是圓柱、四角柱以及三角柱,並且含有無貫穿與貫穿Z軸之障礙物類型。流場方面使用有限體積法(FVM)來解Navier-Stokes equation,紊流方面使用k-ϵ 模型,並使用Pressure Implicit with Splitting of Operators algorithm (PISO algorism) 來求解。可以發現到:在障礙物受力方面,二維流場之障礙物x軸受力與三維貫穿流場的障礙物x軸受力相似,而障礙物之y軸受力則因障礙物形狀之影響,而呈現不相同的趨勢。流場的渦漩分布方面,部分流場會因為障礙物的形狀而造成渦漩的分化或是逐漸消失;在三維流場方面,則會因為障礙物是否貫穿壁面而有不同的立體渦流型態產生。
Cavity flow is a significant area in the analysis of fluid dynamics, with applications in aviation for missile deployment or decoy systems. This paper aims to analyze the forces and energy distribution on obstacles of different shapes in both two-dimensional and three-dimensional cavity flows. The shapes considered include circles, squares, and triangles in the two-dimensional context, and cylinders, rectangular prisms, and triangular prisms in the three-dimensional context. Obstacles are categorized as non-penetrating and penetrating the Z-axis. The finite volume method (FVM) is employed to solve the Navier-Stokes equations, while the k-epsilon model is used for turbulence modeling. The Pressure Implicit with Splitting of Operators algorithm (PISO algorithm) is utilized for solving. It is observed that in terms of obstacle forces, the x-axis forces for obstacles in the two-dimensional flow and the x-axis forces for penetrating obstacles in the three-dimensional flow exhibit similar behavior. However, the y-axis forces on obstacles differ due to the influence of obstacle shapes. Concerning vortex distribution in the flow field, certain flow cases lead to the differentiation or gradual disappearance of vortices due to the shape of the obstacles. In the context of three-dimensional flows, the presence or absence of obstacle penetration through the walls results in distinct three-dimensional vortex patterns.
摘要.................................................................i
Abstract............................................................ii
致謝................................................................iii
目錄.................................................................v
圖目錄...............................................................vi
第一章 導論...........................................................1
第二章 數值方法
2.1 統御方程式........................................................4
2.2 邊界條件.........................................................10
第三章 結果與討論
3.1網格獨立性分析....................................................14
3.2二維空腔中含有障礙物之流場分析......................................17
3.3三維空腔中含有障礙物之流場分析......................................21
3.4二維與三維流場之受力比較...........................................65
第四章 結論與未來展望.................................................69
參考文獻.............................................................70
[1] Aidun, C. K., Triantafillopoulos, N. G., & Benson, J. D.,1991, “ Global stability of a lid-driven cavity with throughflow: flow visualization studies,” Phys. Fluids 3(9), 2081–2090

[2] Albensoeder, S., Kuhlmann, H. C., & Rath, H. J. ,2001, Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Physics of fluids, 13(1), 121-135.

[3] Albensoeder, S., & Kuhlmann, H. C. ,2005, Accurate three-dimensional lid-driven cavity flow. Journal of Computational Physics, 206(2), 536-558.

[4] Barragy, E., & Carey, G.F.,1997, Stream function-vorticity driven cavity solution using p finite elements. Comput. Fluids , 26, 453–468.

[5] Cai, S. G., Ouahsine, A., Favier, J., & Hoarau, Y. ,2017, Moving immersed boundary method. International Journal for Numerical Methods in Fluids, 85(5), 288-323.

[6] Ding, Y., & Kawahara, M. ,1998, Linear stability of incompressible fluid flow in a cavity using finite element method. International journal for numerical methods in fluids, 27(1‐4), 139-157.

[7] Erturk, E., Corke, T. C., & Gökçöl, C. ,2005, Numerical solutions of 2‐D steady incompressible driven cavity flow at high Reynolds numbers. International Journal for Numerical Methods in Fluids, 48(7), 747-774.

[8] Esteve, M. J., Reulet, P., & Millan, P. ,2000, Flow field characterisation within a rectangular cavity. In 10th International Symposium Applications of Laser Techniques to Fluid Mechanics.

[9] Elbadry, Y. T., Hamada, A. A., Boraey, M. A., & AbdelRahman, M. M. ,2021, October, Lid-Driven Cavity Flow with Elliptic Obstacle at Different Orientations. In 2021 3rd Novel Intelligent and Leading Emerging Sciences Conference (NILES) ( 143-146). IEEE.

[10] Gaur, N., Abbavaram, R. R., & Thiagarajan, K. B. ,2022, Performing POD for lid driven cavity using OpenFOAM®. In AIP Conference Proceedings (Vol. 2516, No. 1). AIP Publishing.

[11] Ghia, U. K. N. G., Ghia, K. N., & Shin, C. T. ,1982, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48(3), 387-411.

[12] Huang, T., & Lim, H. C. ,2020, Simulation of Lid-Driven Cavity Flow with Internal Circular Obstacles. Applied Sciences, 10(13), 4583.

[13] Hu, Z., Zheng, X., Ma, Q. W., & Duan, W. Y. ,2015, Fluid flow in a cavity driven by an oscillating lid by an improved incompressible SPH. Procedia Engineering, 126, 275-279.

[14] Ku, H. C., Hirsh, R. S., and Taylor, T. D. ,1987, A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations. Journal of Computational Physics, 70(2), 439-462.

[15] Lawson, S. J., & Barakos, G. N. ,2011, Review of numerical simulations for high-speed, turbulent cavity flows. Progress in Aerospace Sciences, 47(3), 186-216.

[16] Leriche, E., & Gavrilakis, S. ,2000, Direct numerical simulation of the flow in a lid-driven cubical cavity. Physics of Fluids, 12(6), 1363-1376.

[17] Pan, F., & Acrivos, A. ,1967, Steady flows in rectangular cavities. Journal of Fluid Mechanics, 28(4), 643-655.

[18] Prasad, A. K., & Koseff, J. R. ,1989, Reynolds number and end‐wall effects on a lid‐driven cavity flow. Physics of Fluids A: Fluid Dynamics, 1(2), 208-218.

[19] Rajan, I., & Perumal, D. A. ,2021, Flow dynamics of lid-driven cavities with obstacles of various shapes and configurations using the lattice Boltzmann method. Journal of Thermal Engineering, 7(2), 83-102.

[20] Shankar, P. N., & Deshpande, M. ,2000, Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics, 32(1), 93-136.

[21] Samantaray, D., & Das, M. K. ,2018, High Reynolds number incompressible turbulent flow inside a lid-driven cavity with multiple aspect ratios. Physics of Fluids, 30(7), 075107.

[22] Vanella, M., & Balaras, E. ,2009, Short note: A moving-least-squares reconstruction for embedded-boundary formulations. Journal of Computational Physics, 228(18), 6617-6628.

[23] Wu, C. M., Zhou, Y. S., & Lin, C. A. ,2020, Direct numerical simulations of turbulent channel flows with mesh-refinement lattice Boltzmann methods on GPU cluster. Computers & Fluids, 210, 104647.

[24] Xu, G. X., Li, E., Tan, V., & Liu, G. R. ,2012, Simulation of steady and unsteady incompressible flow using gradient smoothing method (GSM). Computers & structures, 90, 131-144.

[25] Zhang, J., Xiao, B., & Yang, W. ,2022, Numerical Study of Lid-Driven Square Cavity Flow with Embedded Circular Obstacles Using Spectral/hp Element Methods. Applied Sciences, 12(22), 11711.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *