帳號:guest(18.223.203.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高維廷
作者(外文):Kao, Wei-Ting
論文名稱(中文):結合介電泳技術之肝癌實驗室晶片應用於藥物篩選之研究
論文名稱(外文):Dielectrophoresis-based Liver Tumor Microenvironment Labchip for Drugs Applications
指導教授(中文):劉承賢
指導教授(外文):Liu, Cheng-Hsien
口試委員(中文):葉昭廷
張晃猷
口試委員(外文):Yeh, Chau-Ting
Chang, Hwan-You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033646
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:90
中文關鍵詞:微機電系統介電泳技術藥物篩選平台肝癌細胞排列
外文關鍵詞:MEMS systemDielectrophoreticDrug testing platformLiver cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肝癌,長期以來是影響人們深遠的一種疾病,因為肝癌在早期階段不易發現,在末期才會出現較為明顯的症狀,並且高機率會夾帶著許多的併發症,因此患者的壽命已所剩不多。由上述可知,治療肝癌一直是一項很艱難的議題,也會因每個病人的生理機制不同,對於藥物的反應也不同,所以在選擇肝癌的藥物上也是一大挑戰。
本研究針對肝癌的治療提出了一項具有創新性的實驗室晶片,該晶片旨在仿肝癌微環境,以更深入地研究這一複雜的疾病。透過運用微機電技術,我們所設計之晶片,能使藥物能夠自動形成組合,並流入細胞培養室,提供了一個嶄新的晶片,以探索不同藥物組合對於肝癌細胞的治療效果。為了貼近真實情況,我們利用介電泳技術,使肝癌細胞和纖維母細胞能夠以不同的比例組成,並排列特定的圖案,以模擬出腫瘤微環境的情況,也使用生物相容水膠材料GelMA,給予細胞生長的支架,使環境能仿三維結構,以接近人體環境。透過實驗結果的分析,我們發現透過藥物組合相較於單一藥物能展現出更好的毒殺效果,特別是由Cisplatin和5FU組成的藥物組合表現最為優異,細胞的生存率僅剩33%,因此可做為最佳藥物推薦組合。此外,我們發現到隨著纖維母細胞比例的增加,肝癌細胞會產生抗藥性之現象。
Hepatocellular carcinoma (HCC) is a pervasive and challenging disease that has had a significant impact on global health for an extended period. The insidious nature of HCC lies in its often-asymptomatic progression, leading to late-stage diagnosis when treatment options become limited. Consequently, finding effective therapeutic strategies for managing HCC remains an urgent priority in the field of oncology.
This study endeavors to develop an innovative drug screening platform tailored specifically for hepatocellular carcinoma. Utilizing cutting-edge microelectromechanical systems (MEMS) technology, a sophisticated biomedical microchip will be meticulously crafted. Our chip can allowing the combination of three different drugs to be directly delivered into the cell culture chamber. Furthermore, we employ dielectrophoresis to arrange fibroblast and cancer cells into specific patterns, simulating the tumor microenvironment's architecture. The fluorescent analysis will be utilized to quantify cell viability. The experimental results indicate that the drug combination of Cisplatin and 5FU exhibits the highest cytotoxicity against HCC cells, the cell viability is reduced to 33%. Additionally, an observation of increased fibroblast proportion leading to cancer cell resistance to the treatment was made.
ABSTRACT I
摘要 II
致謝 III
目錄 V
圖表目錄 VII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究背景 3
1.3.1 生醫微機電與實驗室晶片 3
1.3.2 肝臟組織與功能 4
1.3.3 肝癌簡介與治療 7
第二章 系統理論與文獻回顧 11
2.1 微流體晶片設計理論 11
2.2 微型混合理論 15
2.3 液體組合微流道設計 17
2.3.1 濃度梯度產生器 18
2.3.2 組合式混合器 19
2.3.3 被動式微型混合器 23
2.4 粒子操縱技術 25
2.4.1 粒子介電泳理論 (Dielectrophoresis, DEP) 26
2.4.2 細胞操縱技術 31
2.4.3 腫瘤微環境(Tumor Microenvironment, TME) 34
2.4.4 癌化纖維母細胞 (Cancer-associated fibroblastse CAFs) 35
第三章 實驗材料與方法 37
3.1 微流體晶片設計 37
3.1.1 各層晶片之詳細設計與功能 38
3.1.2 運作流程 45
3.1.3 微流道晶片製程 47
3.1.4 介電泳電極晶片製程 49
3.1.5 系統晶片整合製作 51
3.2 細胞培養 53
3.3 化療藥物 54
3.3.1 Cisplatin 54
3.3.2 5-Fluorouracil 54
3.3.3 Mitoxantrone 54
3.4 多孔隙水膠GelMA (Gelatin Methacryloyl, GelMA) 55
3.5 DEP緩衝溶液 57
3.6 膠原蛋白 58
3.7 細胞存活率分析 (CCK-8 assay) 58
3.8 細胞螢光染劑 60
3.9 細胞死活染劑 61
3.10 實驗設備 61
第四章 實驗結果與討論 63
4.1 藥物組合測試 63
4.2 化療藥物半抑制濃度測試 64
4.3 GelMA曝光時間測試 66
4.4 細胞排列及比例測試 67
4.5 化療藥物測試 69
第五章 結論與未來展望 85
第六章 參考文獻 87

[1] "台灣肝癌發生率下降,為何死亡率仍偏高?." https://www.healthnews.com.tw/article/54784
[2] "What is Microfluidics?" https://www.news-medical.net/life-sciences/What-is-Microfluidics.aspx
[3] "MEMS Packaging for High Volume Products." https://embeddedcomputing.com/technology/analog-and-power/analog-semicundoctors-sensors/mems-packaging-for-high-volume-products
[4] "Lobules of liver." https://en.wikipedia.org/wiki/Lobules_of_liver
[5] "AboutRecent EditsGo ad-free Search Radiopaedia.org Liver lobules." [Online]. Available: https://radiopaedia.org/articles/liver-lobules?lang=us.
[6] "衛生福利部公布癌症發生資料." https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4141&pid=12682
[7] "「腫瘤清除手術/腹腔溫熱化學治療」." https://www.cmuh-crs.com/%e8%85%b9%e8%85%94%e9%8f%a1%e6%89%8b%e8%a1%93.html
[8] "All-Party Parliamentary Group on Liver Health." http://www.appghep.org.uk/
[9] "肝癌." https://www.cgh.org.tw/ec99/rwd1320/category.asp?category_id=932
[10] J. J. Holster et al., "Hepatic arterial infusion pump chemotherapy for unresectable intrahepatic cholangiocarcinoma: a systematic review and meta-analysis," Annals of Surgical Oncology, vol. 29, no. 9, pp. 5528-5538, 2022.
[11] T. G. Ivanco, "Development and Validation of an Aeroelastic Ground Wind Loads Analysis Tool for Launch Vehicles," Virginia Tech, 2009.
[12] N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van De Water, and M. Toner, "Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device," Nature biotechnology, vol. 20, no. 8, pp. 826-830, 2002.
[13] P. J. Hung, P. J. Lee, P. Sabounchi, R. Lin, and L. P. Lee, "Continuous perfusion microfluidic cell culture array for high‐throughput cell‐based assays," Biotechnology and bioengineering, vol. 89, no. 1, pp. 1-8, 2005.
[14] R. J. Pomerantz and D. L. Horn, "Twenty years of therapy for HIV-1 infection," Nature medicine, vol. 9, no. 7, pp. 867-873, 2003.
[15] K. Lee, C. Kim, G. Jung, T. S. Kim, J. Y. Kang, and K. W. Oh, "Microfluidic network-based combinatorial dilution device for high throughput screening and optimization," Microfluidics and Nanofluidics, vol. 8, pp. 677-685, 2010.
[16] M. C. Liu and Y.-C. Tai, "A 3-D microfluidic combinatorial cell array," Biomedical microdevices, vol. 13, pp. 191-201, 2011.
[17] K. Lee, C. Kim, and K. W. Oh, "Single-Layered Microfluidic Network-Based Combinatorial Dilution for Standard Simplex Lattice Design," Micromachines, vol. 9, no. 10, p. 489, 2018.
[18] J. Sun, W. Liu, Y. Li, A. Gholamipour-Shirazi, A. Abdulla, and X. Ding, "An on-chip cell culturing and combinatorial drug screening system," Microfluidics and Nanofluidics, vol. 21, pp. 1-11, 2017.
[19] M. C. Liu, D. Ho, and Y.-C. Tai, "Monolithic fabrication of three-dimensional microfluidic networks for constructing cell culture array with an integrated combinatorial mixer," Sensors and Actuators B: Chemical, vol. 129, no. 2, pp. 826-833, 2008.
[20] C.-Y. Lee, W.-T. Wang, C.-C. Liu, and L.-M. Fu, "Passive mixers in microfluidic systems: A review," Chemical Engineering Journal, vol. 288, pp. 146-160, 2016.
[21] B. He, B. J. Burke, X. Zhang, R. Zhang, and F. E. Regnier, "A picoliter-volume mixer for microfluidic analytical systems," Analytical chemistry, vol. 73, no. 9, pp. 1942-1947, 2001.
[22] V. Mengeaud, J. Josserand, and H. H. Girault, "Mixing processes in a zigzag microchannel: finite element simulations and optical study," Analytical chemistry, vol. 74, no. 16, pp. 4279-4286, 2002.
[23] E. B. Cummings and A. K. Singh, "Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results," Analytical chemistry, vol. 75, no. 18, pp. 4724-4731, 2003.
[24] J. D. Adams, U. Kim, and H. T. Soh, "Multitarget magnetic activated cell sorter," Proceedings of the National Academy of Sciences, vol. 105, no. 47, pp. 18165-18170, 2008.
[25] R. Tornay et al., "Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles," Lab on a Chip, vol. 8, no. 2, pp. 267-273, 2008.
[26] H. A. Pohl, "The motion and precipitation of suspensoids in divergent electric fields," Journal of applied Physics, vol. 22, no. 7, pp. 869-871, 1951.
[27] Z. R. Gagnon, "Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells," Electrophoresis, vol. 32, no. 18, pp. 2466-2487, 2011.
[28] K. W. Wagner, "Erklärung der dielektrischen nachwirkungsvorgänge auf grund maxwellscher vorstellungen," Archiv für Elektrotechnik, vol. 2, no. 9, pp. 371-387, 1914.
[29] A. Irimajiri, T. Hanai, and A. Inouye, "A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell," Journal of theoretical biology, vol. 78, no. 2, pp. 251-269, 1979.
[30] J. Yao, G. Zhu, T. Zhao, and M. Takei, "Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells‐A review," Electrophoresis, vol. 40, no. 8, pp. 1166-1177, 2019.
[31] B. Yafouz, N. A. Kadri, and F. Ibrahim, "Dielectrophoretic manipulation and separation of microparticles using microarray dot electrodes," Sensors, vol. 14, no. 4, pp. 6356-6369, 2014.
[32] Y. Huang, R. Holzel, R. Pethig, and X.-B. Wang, "Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies," Physics in Medicine & Biology, vol. 37, no. 7, p. 1499, 1992.
[33] D. R. Albrecht, G. H. Underhill, T. B. Wassermann, R. L. Sah, and S. N. Bhatia, "Probing the role of multicellular organization in three-dimensional microenvironments," Nature methods, vol. 3, no. 5, pp. 369-375, 2006.
[34] Y.-S. Chen et al., "Liver-lobule-mimicking patterning via dielectrophoresis and hydrogel photopolymerization," Sensors and Actuators B: Chemical, vol. 343, p. 130159, 2021.
[35] C.-T. Ho, R.-Z. Lin, W.-Y. Chang, H.-Y. Chang, and C.-H. Liu, "Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap," Lab on a Chip, vol. 6, no. 6, pp. 724-734, 2006.
[36] Y. Yuan, Y.-C. Jiang, C.-K. Sun, and Q.-M. Chen, "Role of the tumor microenvironment in tumor progression and the clinical applications," Oncology reports, vol. 35, no. 5, pp. 2499-2515, 2016.
[37] E. Sahai et al., "A framework for advancing our understanding of cancer-associated fibroblasts," Nature Reviews Cancer, vol. 20, no. 3, pp. 174-186, 2020.
[38] The American Society of Health-System Pharmacists. "Cisplatin." https://www.drugs.com/monograph/cisplatin.html (accessed.
[39] R. Oun, Y. E. Moussa, and N. J. Wheate, "The side effects of platinum-based chemotherapy drugs: a review for chemists," Dalton transactions, vol. 47, pp. 6645-6653, 2018.
[40] D. Wang and S. J. Lippard, "Cellular processing of platinum anticancer drugs," Nature reviews Drug discovery, vol. 4, pp. 307-320, 2005.
[41] T. C. Johnstone, K. Suntharalingam, and S. J. Lippard, "The next generation of platinum drugs: targeted Pt (II) agents, nanoparticle delivery, and Pt (IV) prodrugs," Chemical reviews, vol. 116, pp. 3436-3486, 2016.
[42] S. Trzaska, "Cisplatin," Chemical & engineering news, vol. 83, p. 52, 2005.
[43] "化療藥品Fluorouracil." https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=5034
[44] "化療藥品Mitoxantrone." https://www.cmuh.cmu.edu.tw/HealthEdus/Detail?no=5027
[45] F. P. Melchels, J. Feijen, and D. W. Grijpma, "A review on stereolithography and its applications in biomedical engineering," Biomaterials, vol. 31, no. 24, pp. 6121-6130, 2010.
[46] M. Sun, X. Sun, Z. Wang, S. Guo, G. Yu, and H. Yang, "Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue," Polymers, vol. 10, no. 11, p. 1290, 2018.
[47] Y. C. Chen et al., "Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels," Advanced functional materials, vol. 22, no. 10, pp. 2027-2039, 2012.
[48] H. J. Yoon et al., "Cold water fish gelatin methacryloyl hydrogel for tissue engineering application," PloS one, vol. 11, no. 10, p. e0163902, 2016.
[49] P. Chansoria, S. Asif, K. Polkoff, J. Chung, J. A. Piedrahita, and R. A. Shirwaiker, "Characterizing the Effects of Synergistic Thermal and Photo-Cross-Linking during Biofabrication on the Structural and Functional Properties of Gelatin Methacryloyl (GelMA) Hydrogels," ACS Biomaterials Science & Engineering, vol. 7, no. 11, pp. 5175-5188, 2021/11/08 2021, doi: 10.1021/acsbiomaterials.1c00635.
[50] J. Ramón-Azcón et al., "Gelatin methacrylate as a promising hydrogel for 3D microscale organization and proliferation of dielectrophoretically patterned cells," Lab on a Chip, vol. 12, no. 16, pp. 2959-2969, 2012.
[51] "CCK-8 protocol." https://www.dojindo.eu.com/TechnicalManual/Manual_CK04.pdf.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *