帳號:guest(3.143.0.85)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張崢一
作者(外文):Chang, Cheng-I
論文名稱(中文):基於包覆性複合材料之高效能磁流變彈性膠體製作與特性研究
論文名稱(外文):Study on process and characteristics of high performance magnetorheological elastic device based on core-shell structure composite material
指導教授(中文):蔡宏營
指導教授(外文):Tsai, Hung-Yin
口試委員(中文):王玉麟
徐偉軒
口試委員(外文):Wang, Yu-Lin
Hsu, Wei-Hsuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033645
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:88
中文關鍵詞:磁流變彈性體導電壓縮膠體富勒烯碳磁場半導體封測
外文關鍵詞:Pressurized conductive rubberFullereneMagnetic fieldSemiconductor assembly and test
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
半導體在當今市場上被廣泛的應用,隨著其技術的不斷進步,如自駕車、智慧型手機產品等對於具有複雜電路結構與高度計算能力的晶片需求大增,因此良好的封裝測試探針的開發變得相當重要,其中導電膠導電路徑短(<1 mm)與安裝快速等優勢令其成為目前探針技術未來的發展趨勢。
為了提升封裝測試探針整體效能,本研究首先對短徑長比富勒烯碳球表面以酸處理的方式進行改質,使碳球表面產生羧酸官能基,之後將半胱胺與球狀鎳粒子一併放入水熱合成釜中,並以異丙醇為溶液進行水熱合成反應;先利用半胱胺中的硫醇官能基置換酸處理時形成在碳球表面羧酸官能基,再以硫醇官能基鍵結於球狀鎳粒子表面,形成包覆性結構(Core-shell structure);最後再混入矽膠材料中,對材料施加外部磁場,透過鎳粒子的鐵磁性使其順外部磁場磁力線進行排列,製備高性能磁流轉彈性膠體(Magneto-Rheological Elastomer, MRE)複合材料測試探針。
本研究使用改質6小時奈米碳球與金屬鎳粒子,透過72小時水熱合成後成功合成包覆性複合材料粒子,再將該粒子以50 wt%之比例與PDMS矽膠進行混和,並以市售強力磁鐵配合導磁模具於固化時施加1.4 T之磁場,從實驗結果可得知,膠體內之包覆性粒子成功順磁力線進行排列,且在不同預固化時間及硬化劑比例下產生不同排列性能變化。
Semiconductors are widely used in today's market, with the continuous advancement of semiconductor technology, products such as self-driving cars and smart phones have greatly increased the demand for chips with complex circuit structures and high computing capabilities. Therefore, the development of a good packaging test probe has become very important, from mature technology of probe cards and pogo pins to the recently emerged conductive compression rubber (pressurized conductive rubber), among which the conductive rubber provide the advantages such as short conductive path (<1 mm) and fast installation, making it the current trend of probe technology development.
In order to improve the overall performance of the packaging test probe, this study combine the short-diameter-length-ratio fullerene and spherical nickel particles into a core-shell structure, and then mixes it into PDMS and applies external magnetic field to the nickel particles to create a high-performance magneto-rheological elastomer (MRE) composite material test probe.
This study employed modified 6-hour nano-carbon spheres and nickel metal particles. Through a 72-hour hydrothermal synthesis, successfully synthesized coated composite material particles were obtained. These particles were then mixed with PDMS silicone in a 50 wt% ratio. During solidification, a commercially available high-strength magnet was used in conjunction with a magnetic mold to apply a magnetic field of 1.4 T. From the experimental results, it was observed that the coated particles inside the colloid aligned successfully with the magnetic field lines. Additionally, different alignment performance variations were observed under various pre-curing times and curing agent ratios.
摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XIII
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
第2章 文獻回顧 5
2.1 微奈米碳材簡介 5
2.1.1 微奈米粒子分散 5
2.1.2 微奈米碳材配向 10
2.2 吸附簡介 11
2.3 水熱合成法簡介 14
2.4 磁場效應 14
2.4.1 磁流變彈性體 17
2.4.2 外加磁場機制 22
2.4.3 磁流變彈性體磁性粒子 24
第3章 研究方法 27
3.1 實驗步驟 28
3.1.1 酸處理溶液配製 28
3.1.2 奈米碳球官能化製程 29
3.1.3 包覆性結構材料合成 31
3.1.4 簡易模具製作 33
3.1.5 磁流轉膠體材料製備 35
3.2 儀器介紹 37
3.2.1 超音波震盪破碎機 37
3.2.2 陶瓷加熱攪拌機 38
3.2.3 雙向直流攪拌機 39
3.2.4 水循環真空抽濾機 40
3.2.5 水熱合成反應釜 41
3.2.6 高溫烘箱 42
3.2.7 桌上型三滾輪機 43
3.2.8 真空除泡系統 44
3.2.9 傅立葉轉換紅外光譜儀 45
3.2.10 掃描式電子顯微鏡 46
3.2.11 離子研磨機 47
3.3 實驗材料 50
第4章 實驗結果與討論 51
4.1 奈米碳球官能化 51
4.1.1 奈米碳球的分散 51
4.1.2 分散劑對於奈米碳球分散結果之影響 52
4.1.3 奈米碳球分散性比較 53
4.1.4 奈米碳球化學鍵分析 55
4.2 包覆性結構合成 57
4.2.1 鎳粒子尺寸 57
4.2.2 水熱合成法製備包覆性結構 58
4.2.3 包覆性粒子表面鍵結比較 59
4.2.4 包覆性粒子包覆完整度比較 68
4.3 磁流變彈性膠體合成結果 76
第5章 結論與未來展望 84
5.1 結論 84
5.2 未來工作 85
參考文獻 86
[1] M. J. Yim et al., "Anisotropic conductive films (ACFs) for ultra-fine pitch chip-on-glass (COG) applications," in Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005., 2005: IEEE, pp. 181-186.
[2] J. Park et al., "Measurement of high-bandwidth and high-density silicone rubber socket up to 110GHz," in 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Nevada, USA, 2016: IEEE, pp. 2481-2486.
[3] C. Lee et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321, no. 5887, pp. 385-388, 2008.
[4] P. Wang et al., "Effects of carboxyl radical on electrical resistance of multi-walled carbon nanotube filled silicone rubber composite under pressure," Composites Science and Technology, vol. 70, no. 10, pp. 1571-1573, 2010.
[5] H. Kroto et al., "Long carbon chain molecules in circumstellar shells," The Astrophysical Journal, vol. 314, pp. 352-355, 1987.
[6] X.-L. Xie et al., "Dispersion and alignment of carbon nanotubes in polymer matrix: a review," Materials science and engineering: R: Reports, vol. 49, no. 4, pp. 89-112, 2005.
[7] D. R. Paul and L. M. Robeson, "Polymer nanotechnology: nanocomposites," Polymer, vol. 49, no. 15, pp. 3187-3204, 2008.
[8] B. Priya and H. Byrne, "Investigation of sodium dodecyl benzene sulfonate assisted dispersion and debundling of single-wall carbon nanotubes," The Journal of Physical Chemistry C, vol. 112, no. 2, pp. 332-337, 2008.
[9] F. Avilés et al., "Evaluation of mild acid oxidation treatments for MWCNT functionalization," Carbon, vol. 47, no. 13, pp. 2970-2975, 2009.
[10] M.-K. Schwarz et al., "Alternating electric field induced agglomeration of carbon black filled resins," Polymer, vol. 43, no. 10, pp. 3079-3082, 2002.
[11] C. Martin et al., "Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites," Polymer, vol. 46, no. 3, pp. 877-886, 2005.
[12] D. Shi et al., "Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties," Journal of Applied Physics, vol. 97, no. 6, p. 064312, 2005.
[13] B. W. Steinert and D. R. Dean, "Magnetic field alignment and electrical properties of solution cast PET–carbon nanotube composite films," Polymer, vol. 50, no. 3, pp. 898-904, 2009.
[14] W. R. Mann et al., "The leading edge of production wafer probe test technology," in 2004 International Conferce on Test, 2004: IEEE, pp. 1168-1195.
[15] M. Barbato and C. Bruno, "Heterogeneous catalysis: theory, models and applications," in Molecular Physics and Hypersonic Flows: Springer, 1996, pp. 139-160.
[16] L. Minati et al., "Characterization of thiol-functionalized carbon nanotubes on gold surfaces," Surface science, vol. 604, no. 17-18, pp. 1414-1419, 2010.
[17] G. W. Morey, "Hydrothermal synthesis," Journal of the American Ceramic Society, vol. 36, no. 9, pp. 279-285, 1953.
[18] S. Laureti et al., "Size dependence of exchange bias in Co/CoO nanostructures," Physical review letters, vol. 108, no. 7, p. 077205, 2012.
[19] A. E. Fitzgerald et al., Electric machinery. McGRAW-hill New York, 2003.
[20] Wikimedia contributors. "File:StonerWohlfarthMainLoop.svg." https://commons.wikimedia.org/wiki/File:StonerWohlfarthMainLoop.svg#mw-jump-to-license (accessed 2022, November 10).
[21] Z. Rigbi and L. Jilken, "The response of an elastomer filled with soft ferrite to mechanical and magnetic influences," Journal of magnetism and magnetic materials, vol. 37, no. 3, pp. 267-276, 1983.
[22] A.-G. Olabi and A. Grunwald, "Design and application of magneto-rheological fluid," Materials & design, vol. 28, no. 10, pp. 2658-2664, 2007.
[23] W. H. Chuah et al., "Magnetorheology of core–shell structured carbonyl iron/polystyrene foam microparticles suspension with enhanced stability," Macromolecules, vol. 48, no. 19, pp. 7311-7319, 2015.
[24] T. Li et al., "Investigate the effect of the magnetic field on the mechanical properties of silicone rubber-based anisotropic magnetorheological elastomer during curing process," Journal of Renewable Materials, vol. 8, no. 11, pp. 1411-1427, 2020.
[25] Z. Xu et al., "Study on movement mechanism of magnetic particles in silicone rubber-based magnetorheological elastomers with viscosity change," Journal of Magnetism and Magnetic Materials, vol. 494, p. 165793, 2020.
[26] S. H. Kwon et al., "Poly (glycidyl methacrylate) coated soft-magnetic carbonyl iron/silicone rubber composite elastomer and its magnetorheology," Macromolecular Research, vol. 27, no. 5, pp. 448-453, 2019.
[27] M. Cvek et al., "Tailoring performance, damping, and surface properties of magnetorheological elastomers via particle-grafting technology," Polymers, vol. 10, no. 12, pp. 1411-1429, 2018.
[28] X. Lu et al., "Mechanical and structural investigation of isotropic and anisotropic thermoplastic magnetorheological elastomer composites based on poly (styrene-b-ethylene-co-butylene-b-styrene)(SEBS)," Rheologica acta, vol. 51, no. 1, pp. 37-50, 2012.
[29] S. S. Kang et al., "Magnetorheological elastomers: Fabrication, characteristics, and applications," Materials, vol. 13, no. 20, pp. 4597-4621, 2020.
[30] J. S. An et al., "Modified silane-coated carbonyl iron/natural rubber composite elastomer and its magnetorheological performance," Composite Structures, vol. 160, pp. 1020-1026, 2017.
[31] J. Li et al., "Influence of particle coating on dynamic mechanical behaviors of magnetorheological elastomers," Polymer Testing, vol. 28, no. 3, pp. 331-337, 2009.
[32] S. U. Khayam et al., "Development and characterization of a novel hybrid magnetorheological elastomer incorporating micro and nano size iron fillers," Materials & Design, vol. 192, p. 108748, 2020.
[33] W. Li and M. Nakano, "Fabrication and characterization of PDMS based magnetorheological elastomers," Smart Materials and Structures, vol. 22, no. 5, p. 055035, 2013.

(此全文20280823後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *