帳號:guest(18.118.146.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃彥瑄
作者(外文):Huang, Yen-Hsuan
論文名稱(中文):應用管胞效應於木材彈性模數三維有限單元預測模型之研發
論文名稱(外文):Research and Development of Three-Dimensional Finite Element Prediction Model of Modulus of Elasticity of Wood by Using Tracheid Effect
指導教授(中文):王偉中
指導教授(外文):WANG, WEI-CHUNG
口試委員(中文):楊德新
李昌駿
口試委員(外文):Yang, Te-Hsin
Lee, Chang-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033615
出版年(民國):113
畢業學年度:112
語文別:中文
論文頁數:277
中文關鍵詞:柳杉管胞效應彈性模數木材纖維方向掃描光學系統X-ray CT影像有限單元法模擬四點抗彎實驗數位影像相關法
外文關鍵詞:Japanese cedarTracheid EffectModulus of ElasticityThree-dimensional Fiber Orientation Scanning SystemX-ray Computed Tomography ImagesFinite Element SimulationFour-Point Bending ExperimentDigital Image Correlation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:1
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
柳杉(Cryptomeria japonica)為臺灣中北部山區常見的一種人工林資源,同時也是臺灣重要的林業經濟樹種。當柳杉原木經過加工製成板材時,每一片板材會由於裁切方向與表面特徵的不同而產生不同的彈性模數(Modulus of Elasticity, MOE)。
本研究透過國立清華大學光測力學實驗室所研發之三維木材纖維方向掃描光學系統(Three-dimensional Fiber Orientation Scanning System, 3D FOSS)拍攝木材表面之雷射散斑影像,將量測到的平面內纖維方向角α和平面外纖維角β,代入應力應變關係式與全域座標轉換式來獲得預測MOE(即E_(local,pred)),而整個試片的E_(local,pred)之平均即為E_(global,pred)。同時,透過掃描木材的X-ray CT影像(X-ray Computed Tomography Image),獲得木材內部的早材、晚材與節點等特徵分布,並依此繪製成三維有限單元法模型。將E_(global,pred)、蒲松比、剪力模數和四點抗彎實驗的條件輸入有限單元法模擬,來預測木材受力後的位移、應力與應變等。最終,本研究利用三維數位影像相關(Three-dimensional Digital Image Correlation, 3D-DIC)法結合四點抗彎實驗,以獲得實驗位移、應變與實驗MOE(E_4P)。
實驗結果證實模擬的位移與實驗位移數值非常相近且分布類似,而模擬應變與實驗應變的數值皆落在相近的範圍內,且分布情況相似。而試片如果受心材化影響,則會使得整體E_(global,pred)值較E_4P值低,若是沒有受到心材化影響的試片,則E_(global,pred)值與E_4P值相近。未來可透過機器學習或深度學習來改良E_(global,pred)值,也可以對心材重新取樣來修改心材的β與短長軸比關係式,以改善E_(global,pred)值。


Japanese cedar (Cryptometria japonica), is a prevalent artificial forest resource in the mountainous areas of northern and central Taiwan. It is also an important species for Taiwan's forestry economy. When wood logs of Japanese cedar are processed into timbers, due to variations in cutting directions and surface characteristics of each piece of timber, different values of modulus of elasticity (MOE) will be exhibited.
In this research, the three-dimensional fiber orientation scanning system (3D FOSS) developed in the Photomechanics Laboratory at National Tsing Hua University was used to capture laser speckle images of the wood surface. The measured in-plane fiber direction angle α and out-of-plane fiber direction angle β were then incorporated into the stress-strain relationship and global coordinate transformation to obtain the predicted modulus of elasticity (E_(local,pred)). The average E_(local,pred) of the entire specimen is considered as E_(global,pred). Simultaneously, X-ray computed tomography images of the scanned wood were used to acquire information about the distribution of earlywood, latewood, and knots within the wood, a three-dimensional finite element model was created. The MOE and conditions of the four-point bending experiment were input into the finite element simulation to predict the displacement, stress, and strain after the wood is subjected to external forces. Finally, the three-dimensional digital image correlation (3D-DIC) in conjunction with the four-point bending experiment were utilized to obtain experimental displacement, strain, and experimental MOE(E_4P).
The experimental results confirms that the simulated displacement values closely match the experimental values and exhibit similar distributions. Additionally, the simulated strain values align closely with the experimental strain values, both values are within almost the same range of strain values. In addition, the distribution patterns of both values are similar. If the specimen is influenced by heartwood formation, it leads to a lower overall E_(global,pred) value compared to the E_4P value. In contrast, specimens not affected by heartwood formation, values of E_(global,pred) and E_4P are close to each other. In the future, accurate prediction of E_(global,pred) can be achieved through machine learning or deep learning techniques. Furthermore, by collecting data from the heartwood and modifying relationship between β and the minor-to- major axis ratio of heartwood, the predicted values of E_(global,pred) may be improved.
目錄
目錄----i
表目錄----vi
圖目錄----vii
一、簡介----1
1.1 研究動機----1
1.2 研究目的----2
1.3 研究流程----3
二、文獻回顧----5
2.1 木材簡介----5
2.2 影響木材強度之因素----7
2.3 木材缺陷分類----9
2.4 管胞效應----11
2.5 木材X-ray CT影像----12
三、實驗原理----14
3.1 管胞效應之應用----14
3.1.1 橢圓方程式----14
3.1.2 纖維角度檢測----18
3.2 木材之彈性模數----19
3.3 X-ray CT影像[23-28]----26
3.4 有限單元法[29-31]----29
3.4.1 求解過程[30]----29
3.4.2 非線性分析[31]----35
3.5 數位影像相關法----39
3.5.1 位移和變形[33-34]----39
3.5.2 相關函數[33-34]----41
3.5.3 三維數位影像相關法[35-37]----42
3.6 靜態抗彎實驗----46
四、實驗裝置----48
4.1 實驗樹種與試片----48
4.1.1 重量、體積、密度量測----50
4.1.2 柳杉的機械性質----50
4.2 木材纖維量測系統----51
4.2.1 光學架設模組----51
4.2.2 三軸位移平臺----52
4.2.3 3D FOSS系統整合軟體----52
4.3 掃描器----53
4.4 X-ray CT影像軟硬體----54
4.5 Ansys WorkBench軟體----54
4.6 四點抗彎與3D-DIC實驗----55
五、實驗程序----57
5.1 3D FOSS拍攝與分析程序----58
5.1.1 3D FOSS拍攝程序----58
5.1.2 3D FOSS分析程序----59
5.2 早材和晚材MOE分析程序----60
5.3 X-ray CT影像掃描與分析程序----61
5.3.1 X-ray CT影像掃描程序----61
5.3.2 X-ray CT影像分析程序----62
5.4 三維有限單元法模型建立----62
5.4.1 Engineering Data----63
5.4.2 Geometry----64
5.4.3 Model----65
5.5 四點抗彎與3D-DIC實驗----72
六、結果與討論----74
6.1 3D FOSS結果----74
6.1.1 試片B62結果----75
6.1.2 試片C31結果----77
6.2 X-ray CT影像拍攝結果----79
6.2.1 試片B62結果----79
6.2.2 試片C31結果----80
6.3 有限單元法模型模擬結果----83
6.3.1 試片B62結果----83
6.3.2 試片C31結果----87
6.4 搭配3D-DIC之四點抗彎實驗結果----93
6.4.1 試片B62結果----94
6.4.2 試片C31結果----95
七、結論與未來展望----98
7.1 結論----98
7.2 未來展望----101
參考文獻----104
附錄A:Canny邊緣檢測法----265
附錄B:Otsu自動閾值選擇算法----266
附錄C:網格品質的收斂性----267
附錄D:年輪傾斜角對木材強度的影響----269
[1] ASTM D1165-18, “Standard Nomenclature of Commercial Hardwoods and Softwoods, ” ASTM International, West Conshohocken , USA, 2018.
[2] Kuo T. Y., “Multiscale Investigation of Mechanical Behavior of Wood by Using Surface Characteristics of Japanese Cedar,” Ph. D. Dissertation, Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China, 2020.
[3] 黃國修, 馬世璋, SUPER生物(全)教學講義, 龍騰文化事業股份有限公司, 臺灣臺北.
[4] Website: https://www.twbwood.com/press/master-three-sections-of-wood, Accessed: April, 2022.
[5] 野渕正, “心材の形成,” J-STAGEトップ, 電子顕微鏡,
Vol.22, pp. 195-201, 1988.
[6] 梶田茂, 木材工學, 養賢堂, 東京, 日本, 1961.
[7] Pakkanen H., “Characterization of Organic Material Dissolved during Alkaline Pulping of Wood and Non-wood Feedstocks” Ph. D. Dissertation , Department of Biological and Environmental, University of Jyväskylä, 2012.
[8] Tamer A. T., Fauziah A. A., “Cellulose Microfibril Angle in Wood and Its Dynamic Mechanical Significance,” Cellulose - Fundamental Aspects, 2013.
[9] Cho C. L., Yan T. Y., and Pin H. C., “Evaluation on the Bending Properties of Glulam Made from Japanese Cedar Thinned Log,” Forest Products Industries, Vol. 29, pp. 227-236, 2010.
[10] Astrand E., “Automatic Inspection of Sawn Wood,” Ph. D. Dissertation, Department of Electrical Engineering, Linkoping University, Sweden, 1996.
[11] American Lumber Standard Committee, Frederick, Maryland, U.S.A, Website: https://www.alsc.org/, Accessed: June, 2022.
[12] Nyström J., “Automatic Measurement of Fiber Orientation in Softwoods by Using the Tracheid Effect,” Computers and Electronics in Agriculture, Vol. 41, pp. 91-99, 2003.
[13] Hartig J. U., Bieberle A., Engmann C., Haller P.“Voxel-based Finite Element Modelling of Wood Elements Based on Spatial Density and Geometry Data Using Computed Tomography,” Holzforschung, Vol. 75, pp. 742-753, 2021.
[14] Huber J. A., Broman O., Ekevad M., Oja J., Hansson L.“A Method for Generating Finite Element Models of Wood Boards from X-ray Computed Tomography Scans,” Computers & Structures, Vol. 260, 106702, 2022.
[15] Zhou J. and Shen J., “Ellipse Detection and Phase Demodulation for Wood Grain Orientation Measurement Based on the Tracheid Effect,” Optics and Lasers in Engineering, Vol. 39, pp. 73-89, 2003.
[16] 鄭宇倢, “木材彈性模數光學掃描方法量測之研究,” 動力機械工程學系碩士論文, 國立清華大學, 臺灣新竹, 2019.
[17] E. Cuevas, D. Zaldívar, and M. Perez-Cisneros, “Applications of Evolutionary Computation in Image Processing and Pattern Recognition, Springer International Publishing,” Cham, Switzerland, 2016.
[18] W. Y. Wu, and M. J. Wang, “Elliptical Object Detection by Using Its Geometric Properties,” Pattern Recognition, Vol. 26, pp. 1499-1509, 1993.
[19] H. K. Yuen, J. Illingworth, and J. Kittler, “Detecting Partially Occluded Ellipses Using the Hough Transform,” Image and Vision Computing, Vol. 7, pp. 31-37, 1989.
[20] Simonaho S. P., Palviainen J., Tolonen Y., and Silvennoinen R., “Determination of Wood Grain Direction from Laser Light Scattering Pattern,” Optics and Lasers in Engineering, Vol. 41, pp. 95-103, 2004.
[21] Elghazouli A. Y., Seismic Design of Buildings to Eurocode 8, Second ed., CRC Press, Boca Raton, FL, USA, 2017.
[22] Hu M., “Studies of the Fibre Direction and Local Bending Stiffness of Norway Spruce Timber: For Application on Machine Strength Grading,” Ph. D. Dissertation, Department of Building Technology, Linnaeus University Press, Växjö, Sweden, 2018.
[23] Ng, Ren., "Fourier Slice Photography". ACM Siggraph 2005 Papers,
pp. 735-744, July, 2005.
[24] 鍾孝文, 醫學影像處理Image Processing, Website: https://www.ee.ntu.edu.tw/profile1.php?id=64, 電機工程學系,國立台灣大學.
[25] Wang G., Yu H., and Bruno D. M., “An Outlook on X‐ray CT Research and Development,” Medical Physics, Vol. 35, pp. 1051-1064, 2008.
[26] Hsieh J. "Computed Tomography: Principles, Design, Artifacts, and Recent Advances." 2003.
[27] Mail N., Moseley D., Siewerdsen J., and Jaffray D., “The Influence of Bowtie Filtration on Cone‐Beam CT Image Quality,” Medical Physics, Vol. 36, pp. 22-32, 2009.
[28] Berninger, W. H., and R. W. Redington, “Multiple Purpose High Speed Tomographic X-ray Scanner,” No. US 4196352. 1980.
[29] 王勖成, 邵敏, 有限單元法基本原理和數值方法, 清華大學出版社, 北京, 中國, 1961.
[30] 劉張軍, 彈性力學與有限元基礎, 高等教育出版社, 北京, 中國, 2019.
[31] 石晶瑩, “AZ31B鎂合金銲接角變形與殘留應力之分析,” 工業教育學系碩士論文, 國立臺灣師範大學, 臺灣臺北, 2006.
[32] Peters W. H. and Ranson W. F., “Digital Imaging Techniques in Experimental Stress Analysis,” Optical Engineering, Vol. 21, pp. 427-431, 1982.
[33] Chu T. C., Ranson W. F., and Sutton M. A., “Applications of Digital-image-correlation Techniques to Experimental Mechanics,” Experimental Mechanics, Vol. 25, pp. 232-244, 1985.
[34] 林佳儒, “塗裝單壁奈米碳管鰭片熱電致冷晶片散熱效率與熱變形之研究,” 動力機械工程學系碩士論文, 國立清華大學, 臺灣新竹, 2017.
[35] Luo P. F., Chao Y. J., Sutton M. A., and Peters W. H., “Accurate Measurement of Three-dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision,” Experimental Mechanics, Vol. 33, pp. 123-132, 1993.
[36] Hu Z., Xie H., Lu J., Hua T., and Zhu J., “Study of the Performance of Different Subpixel Image Correlation Methods in 3D Digital Image Correlation,” Applied Optics, Vol. 49, pp. 4044-51, 2010.
[37] Chiang M. C. and Boult T., “A Public Domain System for Camera Calibration and Distortion Correction,” , Columbia University, 1997.
[38] T. C. Chu, W. F. Ranson, M. A. Sutton and W. H. Peters, “Applications of Digital-image-correlation Techniques to Experimental Mechanics,” Experimental Mechanics, Vol. 25, No. 3, pp. 232-244, 1985.
[39] 陳柏甫, “三維數位影像相關法之新校正程序,” 動力機械工程學系碩士論文, 國立清華大學, 臺灣新竹, 2010.
[40] Z. L. Kahn-Jetter and T. C. Chu, “Three-dimensional Displacement Measurements Using Digital Image Correlation and Photogrammic Analysis,” Experimental Mechanics, Vol. 30, No. 1, pp. 10-16, 1990.
[41] Correlated Solutions, Website: https://www.correlatedsolutions.com/,Accessed: April, 2022.
[42] ASTM D1037-12, “Standard Test Methods for Evaluating Properties of Wood-Based Fiber and Particle Panel Materials,” ASTM International, West Conshohocken, USA, 1992.
[43] Jozsef B., Mechanics of Wood and Wood Composites, Krieger Publishing Company, Malabar, FL, USA, 1982.
[44] ASTM D4442, “Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Based Materials,” ASTM International, West Conshohocken, USA, 1992.
[45] CNS450, “Wood - Sampling methods and general requirements for physical and mechanical tests,” Chinese National Standards, Bureau of Standards, Taipei, Taiwan, Republic of China, 2013.
[46] CNS454, “Wood - Determination of static bending properties,” Bureau of Standards, Taipei, Taiwan, Republic of China, 2013.
[47] ASTM D2395-17, “Standard Test Methods for Density and Specific Gravity (Relative Density) of Wood and Wood-Based Materials,” ASTM International, West Conshohocken, USA, 2017.
[48] Skullestad J. L., Bohne R. A., and Lohne J., “High-rise Timber Buildings As a Climate Change Mitigation Measure – A Comparative LCA of Structural System Alternatives,” Energy Procedia, Vol. 96, pp. 112-123, 2016.
[49] ViBRA 新光電子株式会社, Website: https://www.vibra.co.jp/, Accessed: April, 2022.
[50] MICROTEK ScanMaker 9800XL Plus, Website: https://microtek.com/tw/product/detail/6, Accessed: February, 2022.
[51] PHILIPS Ingenuity CT, Website: https://www.philips.com.tw/healthcare/product/HC889421/ingenuity-128---ds-refurbished-ct-scanner, Accessed: June, 2023.
[52] MicroDicom, Website: https://www.microdicom.com/, Accessed: June, 2023.
[53] ITK-SNAP, Website: http://www.itksnap.org/pmwiki/pmwiki.php, Accessed: June, 2023.
[54] Ansys, Inc, Website: https://www.Ansys.com/, Accessed: Sebtember, 2022.
[55] Johansson C. J., "Chapter 3: Grading of Timber with Respect to Mechanical Properties," Timber Engineering, S. Thelandersson and H. J. Larsen, eds., Wiley, New York, 2003.
[56] 弘達電腦伺服控制材料試驗機, Website: http://www.hungta.com/tw/downloads.html, Accessed: July, 2021.
[57] Matrix Laboratory, The MathWorks, Website: https://ww2.mathworks.cn/products/matlab.html, Accessed: Sebtember, 2022.
[58] Canny J., "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 6, pp. 679-698, 1986.
[59] Otsu N., "A Threshold Selection Method from Gray-Level Histograms." IEEE Transactions on Systems, Man, and Cybernetics. Vol. 9, No. 1, pp. 62–66, 1979.
[60] 許智翔, “應用管胞效應重建木材節點和內部木紋方向及預測木材之彈性模數,” 動力機械工程學系碩士論文, 國立清華大學, 臺灣新竹, 2021.
[61] 台灣儀器科技研究中心 生醫平臺與育成組, https://www.tiri.narl.org.tw/Intro/Member_List?DeptId=0955, Accessed: October, 2021.
[62] Website: https://www.mechtool.cn/infoanddata/infoanddata_
frictionfactor.html, Accessed: July, 2023.
[63] Website: https://zhuanlan.zhihu.com/p/374544132, Accessed: August, 2023.
[64] Website: https://blog.csdn.net/YORU_NO_KUNI/article/
details/130370094, Accessed: August, 2023.
[65] 康大為, “柳杉心材、過渡材與邊材管胞效應之探討,” 動力機械工程學系, 國立清華大學, 碩士論文, 臺灣新竹, 2021.
[66] CNS 14630, “Wood - Sampling methods and general requirements for physical and mechanical tests,” Chinese National Standards, Bureau of Standards, Taipei, Taiwan, Republic of China, 2017.
(此全文20270603後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *