帳號:guest(18.191.162.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪瑜廷
作者(外文):Hung, Yu-Ting
論文名稱(中文):應用於蛋白質消化的微升尺度薄層奈米流體系統
論文名稱(外文):Thin-layer nanofluidic protein digestion with uL volume
指導教授(中文):北森武彥
指導教授(外文):Takehiko, Kitamori
口試委員(中文):陳致真
今中洋行
森川響二朗
口試委員(外文):Chen, Chih-Chen
Hiroyuki, Imanaka
Kyojiro, Morikawa
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033613
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:57
中文關鍵詞:微流體系統玻璃晶片微流道製程蛋白質分解質譜儀分析
外文關鍵詞:Nanofluidic systemGlass nanofluidic channel fabricationprotein digestionLC-MS analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
蛋白質分析是醫學研究領域最重要的技術之一,生物技術主要有兩大基礎,一是由核酸建構的分子生物學,二是蛋白質技術。核酸所調控生理現象的最後產物依舊是蛋白質,由此可知生理運作的表現終究是受蛋白質調控的,因此了解蛋白質與生理現象相對應的關係可以幫助我們了解疾病生成的原因,或準確地檢測疾病。在我們的研究中,我們希望設計出一種玻璃微流體晶片,希望透過少量的樣本即可完成精準的疾病檢測。在蛋白質分析的整個過程中,蛋白質消化過程需耗費大量時間,因此往往是整個研究的瓶頸,於是我們提出了一種用於蛋白質分析的晶片,它具有產生精準的蛋白質消化片段的能力、分解時間短、高通量蛋白質消化這些優勢。我們微流體晶片的流道容量尺度為μL,我們的目標是應用於mL到μL規模的樣品採集分析。由於樣品採集量充足,我們能夠使用超靈敏的LC-MS(液相層析質譜儀)系統來檢測樣品,我們設計的奈米流道的深度和寬度分別為300nm和1mm,裝置的總體積為0.15nL,我們也應用了胰蛋白酶原固定方法來避免酵素自我消化的狀況,以提升酵素存活分解蛋白質的效率,總結來說在這個研究之中,我們避免了傳統蛋白質消化方法的缺點同時又保持了足量蛋白質消化樣本收集檢測的體積。
Protein analysis is one of the most important technologies in the field of medical research. There are two main foundations of biological technology, one is Molecular biology which is built of nucleic acids, and the other one is Protein technology. Protein analysis is the basis of protein technology. The expression of the physiological operation is regulated by proteins. Thus, to realize the expression profile of protein can help us to understand the cause of disease or to detect the disease precisely. In our Topic, we hope to design a device that is able to be used in disease detection by a small amount of specimens. In the whole process of protein analysis, protein digestion is often the bottleneck of the whole research due to its time-consuming. However, we present a device that is used for high digestion precision, low incubation time, and high-throughput protein digestion. The scale of our device is in uL scale. We aim to use the device in the mL to μL scale of sample collection. Due to the sufficient amount of sample collection, we are able to detect the sample by using ultrasensitive LC-MS (Liquid Chromatography Mass Spectrometry) system. Depth and width of nanochannel reactor we design is 300nm and 1mm respectively. The total volume of the device is 0.15nL. Also we applied trypsinogen immobilization method to prevent self-digestion of trypsin. Finally, the device can conquer the disadvantage of traditional bulk digestion but also maintain the bulk volume of protein digestion.
Abstract…………………………………………………………………..……………2
Abstract (中文)………………………………………………………………………...3
Table of Content………………………………………………………....…………….4
Chapter 1 Introduction……………………………………………….………………..6
1.1 Protein analysis…………………………………………………….……..…….6
1.2 Protein digestion methods………………………….……………………..……7
1.2.1 Bulk-scale method…………………………………………...…………..8
1.2.2 Micro-scale and Nano-scale method…………………………….………9
1.3 Issue of conventional protein digestion method………………………...….…10
1.3.1 Digestion time……………………………………………………....….10
1.3.2 Digestion volume………………………………………………..….…..11
1.4 Goal: Thin-layer nanofluidic protein digestion with uL volume…….….…….13
1.4.1 Experiment design……………………………….……………………..13
1.4.2 Fabrication of the thin-layer nanofluidic digestion device………..……14
1.4.3 Verification of digestion by LC-MS analysis……………………...…...15

Chapter 2 Design…………………………………………….……………………….17
2.1 protein digestion process………………………………………....…….…..…17
2.2 Shorten digestion time……………………………..……………………...…..18
2.3 Channel size and flow rate…….…………………….……………….…..……18
2.4. Flow situation in 1mm width nanochannel…………………….…….….……20

Chapter 3 Device fabrication………………………………………..……………..…23
3.1 Glass device fabrication………………………………………..….…………..23
3.1.1 Cr deposition………………………………………………………...…24
3.1.2 EVG-610 Exposure………………………………………….…………24
3.1.3 Dry etching Nano/Microchannel fabrication………………………..…26
3.2 Protein digestion device fabrication………………………………….……….28
3.2.1 APTES coating………………………………………………..………..28
3.2.2 VUV patterning………………………………………………...………29
3.2.3 Substrates bonding…………………………………………………..…31
3.2.4 Trypsin immobilization……………………………...…………………33

Chapter 4 Protein digestion experiment…………………………….……………….36
4.1 Cytochrome C digestion……………………………………..……..…………36
4.1.1 Traditional bulk cytochrome C digestion……………………..………..36
4.1.2 Nanochannel device protein digestion……………..………..…………37
4.2 Analysis with LC-MS………………………………………………..….……39
4.2.1 LC-MS analysis condition……………………..……………..………..39
4.2.2 MS results of cytochrome C digestion………………………..…..……39
4.2.3 Digestion rate……………………………….………….…..……..……45

Chapter 5 Conclusion and Future Work………………………………….……….....49
5.1 Conclusion………………………….…............………….……….………….49
5.2 Future Work………………………..……..….……………………………….50

References……………………………………………………………………………52
[1] Koki Yamamoto, a Kyojiro Morikawa, Hiroyuki Imanaka, Koreyoshi Imamura and Takehiko Kitamori. Picoliter enzyme reactor on a nanofluidic device exceeding the bulk reaction rate. Analyst, 2020, 145, 5801
[2] Ryoichi Ohta, Kazuma Mawatari, Tomoaki Takeuchi, Kyojiro Morikawa, and Takehiko Kitamori. Detachable glass micro/nanofluidic device
[3] Linda Switzar, Martin Giera, and Wilfried M. A. Niessen. Protein Digestion: An Overview of the Available Techniques and Recent Developments.
[4] RADHIA PUTRI. Development of monolithic columns for digestion of proteins and separation of dansyl amino acid enantiomers in capillary liquid chromatography.
[5] Elena Tobolkina. New analytical tools combining gel electrophoresis and mass spectrometry
[6] Koki Yamamoto, Kyojiro Morikawa, Hisashi Shimizu, Hiroki Sano, Yutaka Kazoe and Takehiko Kitamori. Accelerated protein digestion and separation with picoliter volume utilizing nanofluidics. Lab Chip, 2022, 22, 1162
[7] You You Zhang, Liang Liu, Liang Ren. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination of cantharidin in biological specimens and application to postmortem interval estimation in cantharidin poisoning. Scientific Reports, 2020
[8] Dr. Egidijus Machtejevas, Sr. HPLC Tips & Tricks: Optimizing Injection Volume. Analytix Reporter, Issue 13
[9] Koki Yamamoto, Kyojiro Morikawa, Chihchen Chen & Takehiko Kitamori. Stability of enzyme immobilized on the nanofluidic channel surface. Analytical Sciences volume 39, pages251–255 (2023)
[10] Danilo Corradini, Eugenia Cogliandro, Isabella Nicoletti. Improved peptide mapping by capillary zone electrophoresis using triethylenetetramine phosphate buffer as the electrolyte solution. Journal of Liquid Chromatography & Related Technologies, Published online: 06 Feb 2007, Pages 2785-2800
[11] A. V. Kulikov, E. S. Shilov, I. A. Mufazalov, V. Gogvadze, S. A. Nedospasov, B. Zhivotovsky. Cytochrome c: the Achilles’ heel in apoptosis. Cell. Mol. Life Sci. DOI 10.1007/s00018-011-0895-z
[12] Jonathan M. Oyler, Bao Q. Tran, and David P. A. Kilgour. Rapid Denaturing Organic Digestion Method for Targeted Protein Identification and Characterization. Anal. Chem. 2021, 93, 5046−5053
[13] Changling Wu, Hualin Dong, Peng Wang, Minyi Han, Xinglian Xu. Sequential changes in antioxidant activity and structure of curcumin-myofibrillar protein nanocomplex during in vitro digestion. Food Chemistry 382 (2022) 132331 Available
[14] Stephen C Alley and Kevin E Anderson. Analytical and bioanalytical technologies for characterizing antibody–drug conjugates. Current Opinion in Chemical Biology 2013, 17:406–411
[15] Irene van den Broeka, Wilfried M.A. Niessenb,c, William D. van Dongena. Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. Journal of Chromatography B, 929 (2013) 161– 179
[16] John F. Kellie, Kristen E. Pannullo, Yinghe Li, Kristy Fraley, Andrew Mayer, Caroline J. Sychterz, Matthew E. Szapacs, and Molly Z. Karlinsey. Antibody Subunit LC-MS Analysis for Pharmacokinetic and Biotransformation Determination from In-Life Studies for Complex Biotherapeutics. Anal. Chem. 2020, 92, 8268−8277
[17] John F. Kellie,* Kristen E. Pannullo, Yinghe Li, Kristy Fraley, Andrew Mayer, Caroline J. Sychterz, Matthew E. Szapacs, and Molly Z. Karlinsey. Antibody Subunit LC-MS Analysis for Pharmacokinetic and Biotransformation Determination from In-Life Studies for Complex Biotherapeutics. Anal. Chem. 2020, 92, 8268−8277 Read
[18] Irene van den Broeka, Wilfried M.A. Niessenb,c, William D. van Dongena. Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. Journal of Chromatography B, 929 (2013) 161– 179
[19] fKenichiro Todoroki, Hajime Mizuno, Eiji Sugiyama, Toshimasa Toyo’oka. Bioanalytical methods for therapeutic monoclonal antibodies andantibody–drug conjugates: A review of recent advances and futureperspectives. Journal of Pharmaceutical and Biomedical Analysis 179 (2020) 112991
[20] John F. Kellie, Andrew S. Thomson, Shugui Chen, Sarah L. Childs, Molly Z. Karlinsey , Shing H. Mai , John R. White , Robert A. Biddlecombe . Biotherapeutic Antibody Subunit LC-MS and Peptide Mapping LC-MS Measurements to Study Possible Biotransformation and Critical Quality Attributes in Vivo. Journal of Pharmaceutical Sciences 108 (2019) 1415-1422
[21] Tao Chena, Dian Sub, Jason Gruenhagena, Christine Gua, Yi Lia, Peter Yehla,Nik P. Chetwyna, Colin D. Medleya. Chemical de-conjugation for investigating the stability of smallmolecule drugs in antibody-drug conjugates. Journal of Pharmaceutical and Biomedical Analysis 117 (2016) 304–310
[22] Ruijun Tian, Xuyen Dai Hoa, Jean-Philippe Lambert, John Paul Pezacki, Teodor Veres, and Daniel Figeys. Development of a Multiplexed Microfluidic Proteomic Reactor and Its Application for Studying ProteinProtein Interactions. ACS, 2011
[23] Xiangwei He, Qiushui Chen, Yandong Zhang, Jin-Ming Lin. Recent advances in microchip-mass spectrometry for biological analysis. Trends in Analytical Chemistry 53 (2014) 84–97
[24] Rizo Edwin Gumba, Suryani Saallah, Mailin Misson, Clarence M. Ongkudon, Ann Anton. Green biodiesel production: a review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Research Journal 11 (2016) 431-447
[25] Masato Taoka, Maki Ikumi, Hiroshi Nakayama, Shunpei Masaki, Ryozo Matsuda, Yuko Nobe, Yoshio Yamauchi, Jun Takeda, Nobuhiro Takahashi, Toshiaki Isobe. In-Gel Digestion for Mass Spectrometric Characterization of RNA from Fluorescently Stained Polyacrylamide Gels. Anal. Chem. 2010, 82, 7795–7803
[26] Allan J. Alla andKeith J. Stine. Recent Strategies for Using Monolithic Materials in Glycoprotein and Glycopeptide Analysis. Separations 2022, 9(2), 44
[27] Suci Amalia, Stevin Carolius Angga, Elvina Dhiaul Iftitah, Dias Septiana, Baiq Octaviana D. Anggraeny, Warsito , Aliya Nur Hasanah , Akhmad Sabarudin. Immobilization of trypsin onto porous methacrylate-based monolith for flow-through protein digestion and its potential application to chiral separation using liquid chromatography. Heliyon Volume 7, Issue 8, August 2021,
[28] Jeonghoon Lee, Harrison K. Musyimi, Steven A. Soper and Kermit K. Murraya. Development of an Automated Digestion and Droplet Deposition Microfluidic Chip for MALDI-TOF MS.
[29] Lihua Huang, Jirong Lu, Victor J. Wroblewski, John M. Beals and Ralph M. Riggin. In Vivo Deamidation Characterization of Monoclonal Antibody by LC/MS/MS. Anal. Chem. 2005, 77, 1432-1439
[30] H. Poppe. Mass transfer in rectangular chromatographic channels. Journal of Chromatography A, 948 (2002) 3–17
[31] Xiangwei He, Qiushui Chen, Yandong Zhang, Jin-Ming Lin. Recent advances in microchip-mass spectrometry for biological analysis. Trends in Analytical Chemistry 53 (2014) 84–97
(此全文20281001後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *