帳號:guest(18.219.239.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):程嘉昱
作者(外文):Cheng, Chia-Yu
論文名稱(中文):欠驅動擬人機器手應用於穩定夾持與物體操控之設計與分析
論文名稱(外文):Design and Analysis of Underactuated Anthropomorphic Robotic Hand for Stable Grasping and Manipulation
指導教授(中文):張禎元
指導教授(外文):Chang, Jen-Yuan
口試委員(中文):陳榮順
馮國華
李俊則
李志鴻
口試委員(外文):Chen, Rong-Shun
Feng, Guo-Hua
Lee, Chun-Tse
Li, Chih-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033602
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:97
中文關鍵詞:欠驅動機構擬人型手指基因演算法視覺伺服控制機器手操控
外文關鍵詞:Underactuated StructureAnthropomorphic Robotic FingerGenetic AlgorithmVisual Servo ControlIn-Hand Manipulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:80
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著科技發展引領產業轉型,生活中被大量引入機械手臂作為智慧自動化的應用,可以從事高重複性或是高風險的工作任務。其中機器手作為與外界互動的不可或缺的部分,在應用上相當重要。在現今的世界中,各式各樣的機器手已然出現在各領域中。在工業方面,由於過往的商業模式是以大量生產的方式來降低製造成本,因此在考量穩定夾取的可靠度上,末端效應器的結構都是針對特定的物體或用途來設計,不同情境下需要不斷更換。然而工業4.0提出智慧工廠的概念,其最重要的目標是滿足現今市場對於商品新穎、獨具特色的要求,可以達到產品高度客製化,這將完全顛覆傳統工廠的生產方式。
為了符合多樣化的生產需求,本研究將對於多功能機器手進行研究來增加單一機器手的實用性,研究內容分為三個部分,首先是開發具有兩種夾取手段的機器手機構,整合兩種夾取手段可以使機器手應付更多元的工作環境。第二部分是設計夾持穩定性的分析流程,並運用基因演算法進行機構最佳化的分析,來提升機器手夾持能力。最後,在兩種夾取手段的搭配與視覺伺服的概念下,實現欠驅動機器手對於物體的精準操控任務。
As technology advances, leading industrial transformation, robotic system have been introduced in large numbers as an application of intelligent automation, which can engage in highly repetitive or high-risk tasks. Robotic hands play an indispensable role of robotic system in the interaction with the surroundings. In the industrial sector, as traditional business models have focused primarily on mass production to reduce manufacturing costs, the structure of end effectors has been tailored to specific objects or purposes and modified for different contexts. However, Industry 4.0 proposes the concept of intelligent factories, aiming to meet the market's demand for novel and unique products and to achieve a high degree of product customization. This concept completely revolutionized the traditional manufacturing methods of factories.
To meet diverse manufacturing demands, this thesis investigates the multifunctional robotic hands to enhance the practicality of a single robotic hand. This research comprises three main parts. The first part is to develop a robotic hand with two grasping modalities and it enables the robot to cope with more diversified working environments. The second part is to design the analysis process of grasping stability and apply the genetic algorithms for the optimal analysis of the mechanism to improve the grasping ability of the robotic hands. Finally, with the combination of the two grasping modalities and the concept of visual servo control, precise in-hand manipulation with underactuated robotic hand is realized.
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XII
符號說明 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 機器手機構 3
1.3.2 夾持最佳化分析 15
1.3.3 操控方法 16
1.4 研究目標 18
1.5 研究方法 19
第二章 理論背景 21
2.1 前言 21
2.2 欠驅動手指力學模型 21
2.3 基因演算法 32
2.3.1 基因演算法專有名詞 32
2.3.2 基因演算法計算流程 33
2.3.3 基因演算法優勢 36
2.4 章節總結 37
第三章 機器手機構設計 38
3.1 前言 38
3.2 機器手介紹 38
3.2.1 機器手機構 38
3.2.2 手指機構與運動學 42
3.2.3 伸縮吸盤功能 45
3.2.4 兩種夾取手段搭配 48
3.3 章節總結 49
第四章 機器手夾持穩定性分析 50
4.1 前言 50
4.2 夾持穩定性 50
4.2.1 抓取穩定性 50
4.2.2 抓握穩定性 53
4.3 分析方法設計 53
4.3.1 量化指標計算流程 53
4.3.2 模擬分析結果 59
4.4 實驗架設與驗證 62
4.5 機器手機構參數分析 66
4.5.1 手指開合角度範圍分析 66
4.5.2 手指長度分析 68
4.6 機器手機構參數最佳化 71
4.6.1 機構參數改變之量化指標計算流程 71
4.6.2 基因演算法最佳化機構參數 73
4.7 章節總結 76
第五章 機器手操控系統建立 77
5.1 前言 77
5.2 操控任務描述 77
5.3 實驗架設 79
5.4 操控方法 81
5.4.1 致動器動作集設計 81
5.4.2 視覺伺服理論 84
5.5 實驗驗證 86
5.5.1 動作集穩定性 86
5.5.2 動作集關係式 86
5.5.3 控制參數調整 87
5.6 章節總結 89
第六章 結論與未來展望 90
6.1 結論 90
6.2 未來展望 91
參考文獻 93
[1] 行政院主計總處, 國民所得統計及國內經濟情勢展望. 2022年8月12日.
[2] R. Ozawa, Y. Mishima, and Y. Hirano, "Design of a Transmission With Gear Trains for Underactuated Mechanisms," IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1399-1407, 2016.
[3] Y. Hirano, K. Akiyama, and R. Ozawa, "Design of low-cost and easy-assemblable robotic hands with stiff and elastic gear trains," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9-14 Oct. 2016 2016, pp. 864-870.
[4] T. Tamamoto, K. Sayama, and K. Koganezawa, "Multi-joint gripper with Differential Gear System," in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, 14-18 Sept. 2014 2014, pp. 15-20.
[5] G. Li and W. Zhang, "Study on coupled and self-adaptive finger for robot hand with parallel rack and belt mechanisms," in 2010 IEEE International Conference on Robotics and Biomimetics, 14-18 Dec. 2010 2010, pp. 1110-1115.
[6] D. Liang and W. Zhang, "PASA-GB Hand: a Novel Parallel and Self-adaptive Robot Hand with Gear-belt Mechanisms," Journal of Intelligent & Robotic Systems, vol. 90, no. 1, pp. 3-17, 2018/05/01.
[7] ROBOTIQ, 3-Finger Adaptive Robot Gripper [Online]. Available: https://robotiq.com/products/3-finger-adaptive-robot-gripper.
[8] N. Dechev, W. L. Cleghorn, and S. Naumann, "Multiple finger, passive adaptive grasp prosthetic hand," Mechanism and Machine Theory, vol. 36, no. 10, pp. 1157-1173, 2001/10/01.
[9] G. Guo, J. Zhang, and W. A. Gruver, "Optimal Design of a Six-Bar Linkage with One Degree of Freedom for an Anthropomorphic Three-Jointed Finger Mechanism," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 207, no. 3, pp. 185-190, 1993.
[10] D. Yoon and Y. Choi, "Underactuated Finger Mechanism Using Contractible Slider-Cranks and Stackable Four-Bar Linkages," IEEE/ASME Transactions on Mechatronics, vol. 22, no. 5, pp. 2046-2057, 2017.
[11] R. Ma and A. Dollar, "Yale OpenHand Project: Optimizing Open-Source Hand Designs for Ease of Fabrication and Adoption," IEEE Robotics & Automation Magazine, vol. 24, no. 1, pp. 32-40, 2017.
[12] L. U. Odhner et al., "A compliant, underactuated hand for robust manipulation," The International Journal of Robotics Research, vol. 33, no. 5, pp. 736-752, 2014/04/01.
[13] D. M. Aukes et al., "Design and testing of a selectively compliant underactuated hand," The International Journal of Robotics Research, vol. 33, no. 5, pp. 721-735, 2014.
[14] H. Dong, E. Asadi, C. Qiu, J. Dai, and I. M. Chen, "Geometric design optimization of an under-actuated tendon-driven robotic gripper," Robotics and Computer-Integrated Manufacturing, vol. 50, pp. 80-89, 2018/04/01.
[15] B. Massa, S. Roccella, M. C. Carrozza, and P. Dario, "Design and development of an underactuated prosthetic hand," in Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 11-15 May 2002 2002, vol. 4, pp. 3374-3379 vol.4.
[16] X. Zhe and E. Todorov, "Design of a highly biomimetic anthropomorphic robotic hand towards artificial limb regeneration," in 2016 IEEE International Conference on Robotics and Automation (ICRA), 16-21 May 2016 2016, pp. 3485-3492.
[17] S. Jacobsen, E. Iversen, D. Knutti, R. Johnson, and K. Biggers, "Design of the Utah/M.I.T. Dextrous Hand," in Proceedings. 1986 IEEE International Conference on Robotics and Automation, 7-10 April 1986 1986, vol. 3, pp. 1520-1532.
[18] F. Lotti, P. Tiezzi, G. Vassura, L. Biagiotti, G. Palli, and C. Melchiorri, "Development of UB Hand 3: Early Results," in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 18-22 April 2005 2005, pp. 4488-4493.
[19] H. Liu et al., "Multisensory five-finger dexterous hand: The DLR/HIT Hand II," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 22-26 Sept. 2008 2008, pp. 3692-3697.
[20] Shadow Dexterous Hand Series. [Online]. Available: https://www.shadowrobot.com/dexterous-hand-series/.
[21] L. Birglen and C. Gosselin, "Underactuation in robotic grasping hands," 2002.
[22] C. D. Santina, C. Piazza, G. Grioli, M. G. Catalano, and A. Bicchi, "Toward Dexterous Manipulation With Augmented Adaptive Synergies: The Pisa/IIT SoftHand 2," IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1141-1156, 2018.
[23] Z. Xu, V. Kumar, and E. Todorov, "A low-cost and modular, 20-DOF anthropomorphic robotic hand: design, actuation and modeling," in 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), 15-17 Oct. 2013 2013, pp. 368-375.
[24] BarrettHand BH8. [Online]. Available: https://advanced.barrett.com/barretthand.
[25] Ottobock, bebionic Hand EQD. [Online]. Available: https://www.ottobock.com/en-us/product/8E70.
[26] ROBOTIQ, Vacuum Grippers. [Online] Available: https://robotiq.com/products/vacuum-grippers?ref=nav_product_new_button.
[27] E. Brown et al., "Universal robotic gripper based on the jamming of granular material," Proceedings of the National Academy of Sciences, vol. 107, no. 44, pp. 18809-18814, 2010/11/02.
[28] Y. Tsugami and T. Nishida, Simple Structured Gripper Using Electromagnet and Permanent Magnet. 2017.
[29] S. Li et al., "A Vacuum-driven Origami “Magic-ball” Soft Gripper," in 2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019 2019, pp. 7401-7408.
[30] K. Harada et al., "Proposal of a shape adaptive gripper for robotic assembly tasks," Advanced Robotics, vol. 30, no. 17-18, pp. 1186-1198, 2016/09/16.
[31] K. Nie, W. Wan, and K. Harada, "A Hand Combining Two Simple Grippers to Pick Up and Arrange Objects for Assembly," IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 958-965, 2019.
[32] L. Kang, J.-T. Seo, S.-H. Kim, W.-J. Kim, and B.-J. Yi, "Design and Implementation of a Multi-Function Gripper for Grasping General Objects," Applied Sciences, vol. 9, no. 24, 2019.
[33] A. Pagoli, F. Chapelle, J. A. Corrales, Y. Mezouar, and Y. Lapusta, "A Soft Robotic Gripper With an Active Palm and Reconfigurable Fingers for Fully Dexterous In-Hand Manipulation *," IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 7706-7713, 2021.
[34] C. H. Liu, F. M. Chung, Y. Chen, C. H. Chiu, and T. L. Chen, "Optimal Design of a Motor-Driven Three-Finger Soft Robotic Gripper," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1830-1840, 2020.
[35] Y. Sun, Y. Liu, F. Pancheri, and T. C. Lueth, "LARG: A Lightweight Robotic Gripper With 3-D Topology Optimized Adaptive Fingers," IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 2026-2034, 2022.
[36] M. A. Jabbar, S. H. Bakhy, and E. H. Flaieh, "A new multi-objective algorithm for underactuated robotic finger during grasping and pinching assignments," IOP Conference Series: Materials Science and Engineering, vol. 671, no. 1, p. 012135, 2020/01/01.
[37] R. R. Ma and A. M. Dollar, "On dexterity and dexterous manipulation," in 2011 15th International Conference on Advanced Robotics (ICAR), 20-23 June 2011 2011, pp. 1-7.
[38] T. Yoshikawa, "Multifingered robot hands: Control for grasping and manipulation," ANNUAL REVIEWS IN CONTROL, vol. 34, no. 2, pp. 199-208, DEC 2010.
[39] O. M. Andrychowicz et al., "Learning dexterous in-hand manipulation," The International Journal of Robotics Research, vol. 39, no. 1, pp. 3-20, 2020.
[40] T. L. Lionel Birglen, Clément Gosselin, Underactuated Robotic Hands (Springer Tracts in Advanced Robotics). Springer Berlin, Heidelberg, 2008, pp. XV, 244.
[41] 黃俊維, "具可快速更換欠驅動自適應結構與吸附物件高度可調之多功能創新機器人夾爪設計與開發," in 動力機械工程學系 vol. 碩士, ed. 新竹市: 國立清華大學, 2022, p. 72.
[42] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence: The MIT Press, 1992
[43] FAULHABER, FAULHABER DC-MOTORS Series 2657W024CXR. [Online]. Available: https://www.faulhaber.com/en/products/series/2657cxr/.
[44] FAULHABER, FAULHABER PLANETARY GEARHEADS Series 26/1. [Online]. Available: https://www.faulhaber.com/en/products/series/261/.
[45] FAULHABER, FAULHABER ENCODERS Series IE3-1024. [Online]. Available: https://www.faulhaber.com/en/products/series/ie3-1024/.
[46] C.-T. Lee and J.-Y. Chang, "Design of Hybrid Fully Actuated and Self-Adaptive Mechanism for Anthropomorphic Robotic Finger," Journal of Mechanisms and Robotics, vol. 15, no. 4, 2022.
[47] O. K. Bruno Siciliano, Ed. Springer Handbook of Robotics (Springer Handbooks). Springer Berlin, Heidelberg, 2008, pp. LX, 1611.
[48] C. B. Irwin and R. G. Radwin, "A new method for estimating hand internal loads from external force measurements," (in eng), Ergonomics, vol. 51, no. 2, pp. 156-67, Feb 2008.
[49] R. HAMILTON and R. A. DUNSMUIR, "Radiographic Assessment of the Relative Lengths of the Bones of the Fingers of the Human Hand," Journal of Hand Surgery, vol. 27, no. 6, pp. 546-548, 2002.
[50] K. Deep, K. P. Singh, M. L. Kansal, and C. Mohan, "A real coded genetic algorithm for solving integer and mixed integer optimization problems," Applied Mathematics and Computation, vol. 212, no. 2, pp. 505-518, 2009/06/15.
[51] R. Ozawa and K. Tahara, "Grasp and dexterous manipulation of multi-fingered robotic hands: a review from a control view point," ADVANCED ROBOTICS, vol. 31, no. 19-20, pp. 1030-1050, 2017.
[52] B. Calli and A. M. Dollar, "Vision-based precision manipulation with underactuated hands: Simple and effective solutions for dexterity," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 9-14 Oct. 2016 2016, pp. 1012-1018.
[53] F. Chaumette and S. Hutchinson, "Visual servo control. I. Basic approaches," IEEE Robotics & Automation Magazine, vol. 13, no. 4, pp. 82-90, 2006.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *