帳號:guest(3.135.204.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許育誠
作者(外文):Hsu, Yu-Cheng
論文名稱(中文):雷射輔助噴射式大氣電漿之即時監測與控制系統開發
論文名稱(外文):Development of the Real-time Monitoring and Control for Laser-Assisted Atmospheric Pressure Plasma Jet System
指導教授(中文):李明蒼
指導教授(外文):Lee, Ming-Tsang
口試委員(中文):莊嘉揚
徐振哲
口試委員(外文):Juang, Jia-Yang
Hsu, Cheng-Che
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033587
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:92
中文關鍵詞:大氣電漿透明導電薄膜氧化鋅摻雜鎵雷射輔助製程透明電極光譜分析
外文關鍵詞:Atmospheric pressure plasma jetTransparent conductive oxideGallium doped zinc oxideLaser-assisted manufactureTransparent conductive electrodeSpectral analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:182
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
隨著穿戴式科技技術日漸成熟,對透明導電薄膜(Transparent conductive oxide , TCO)的需求也日益攀升。目前透明導電薄膜主流以氧化銦錫(Indium tin oxide , ITO)為材料,但銦金屬價格高昂且產量稀缺,因此本研究嘗試開發一套智能化的噴流式大氣電漿鎵摻氧化鋅(Gallium doped zinc oxide, GZO)鍍膜系統,藉由製程參數優化與即時監控,提升GZO的鍍膜品質、導電性及透光度等,使其能夠取代ITO薄膜。本研究以此系統鍍製的GZO導電薄膜,最佳薄膜電阻值約為30 Ω/□。本研究亦將二氧化碳雷射源成功整合入大氣電漿鍍膜系統中,能在大氣電漿鍍膜同時進行選擇性的雷射退火,製作出線寬1.5 mm,線長10 mm,電阻約240 kΩ,且透光度大於87%的透明金屬薄膜導線。
為了進一步提升雷射輔助噴流式大氣電漿系統導電薄膜的鍍膜精度以及鍍膜穩定性,在本研究中開發了一套程式系統,整合大氣電漿、二氧化碳雷射與三軸移動平台,同時以光譜儀與溫度感測器於製程中擷取數據。透過該系統,能實時監測各項製程數據,分析製程狀況,判斷製程是否出現異常並提供製程參數的建議,達成對雷射輔助噴流式大氣電漿系統即時監測與控制,使製程保持穩定的鍍膜品質。其中為了解決大氣電漿在每次啟動時,電漿狀態需一段時間(載氣流量100sccm下,約3分鐘)才能趨於穩定。本研究根據電漿光譜分析數據,使用神經網絡建立一套製程參數的光譜分析模型,並透過本研究所建立的PID控制器,對機台進行實時調控,使電漿狀態穩定所需的時間減少約33%,有效地提升製程效率。
As the wearable device technology matured over time, an increase in demand for transparent conductive oxide (TCO) films gained recognition. Indium tin oxide (ITO) is the most widely used material for transparent conductive films. However, its expensiveness and scarcity in supply propel further studies into replacement materials that are more accessible. In this research, an intelligent atmospheric pressure plasma jet (APPJ) gallium-doped-zinc-oxide (GZO) coating system was developed. Through the optimization of process parameters and real-time monitoring, the coating quality, conductivity, and transparency of GZO are enhanced and controlled. The optimized GZO film has a sheet resistance of 30 Ω/□, which is close to the electrical conductivity that is required for an acceptable TCO film. Additionally, a carbon dioxide (CO2) laser was integrated with the APPJ coating system to enable in-situ laser patterning and annealing during the plasma coating process. As a result, a transparent metal wire with a width of 1.5 mm, length of 10 mm, a resistance of approximately 240 kΩ, and an average film transmittance greater than 87%.
To further improve the coating accuracy and stability of the laser-assisted APPJ system, a multi-system integration was developed in this research. This system is comprised of the APPJ, the CO2 laser, and the 3-axis motorized stage, simultaneously capturing data using spectrometer and the infrared (IR) camera during the process. Through this system, real-time monitoring of various process data is enabled, allowing for analysis of process conditions, detection of anomalies, and provision of recommendations for process parameters. This achieves real-time monitoring and control of laser-assisted APPJ system, ensuring stable coating quality throughout the process. A case study was performed to demonstrate the aforementioned concept to resolve the time delay during activation of the APPJ before plasma can stabilize (approximately 3 minutes delay for a carrier gas flow rate under 100 sccm). Based on plasma spectroscopy analysis data, an artificial neural networks model was applied to construct a spectral analysis model for process parameters. Subsequently, through the PID controller developed in this study, real-time control is applied to the APPJ, resulting in a reduction of approximately 33% in the time required to stabilize the plasma condition, thus effectively enhances process efficiency.
誌謝 I
摘要 II
Abstract III
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
第二章 文獻回顧及理論介紹 3
2.1 大氣電漿鍍膜技術 3
2.1.1 電漿 3
2.1.2 大氣電漿 3
2.1.3 噴射式大氣電漿 4
2.1.4 透明薄膜鍍製 4
2.1.5 雷射輔助透明薄膜退火 6
2.2 智能化加工技術 7
2.2.1 邊緣運算 7
2.2.2 電漿放射光譜分析 7
2.2.3 機器學習應用於電漿放射光譜 8
2.2.4 比例積分微分(PID)控制器 9
2.2.5 機器學習應用於控制系統 10
第三章 大氣電漿機台架設及研究方法 12
3.1 大氣電漿鍍膜系統 12
3.1.1 大氣電漿設備總覽 12
3.1.2 噴射式大氣電漿系統設備介紹與參數設定 16
3.1.3 大氣電漿監測系統與薄膜量測裝置 26
3.2 整合程式設計 30
3.2.1 數據蒐集程式 31
3.2.2 控制程式 34
3.2.3 分析回饋程式 38
3.3 實驗方法及設定 41
3.3.1 大氣電漿鍍膜實驗參數 41
3.3.2 雷射鍍製導線加工方式 43
第四章 研究結果 46
4.1 大氣電漿鍍膜 46
4.2 雷射輔助鍍製導線 55
4.3 加工點溫度數據分析 62
4.4 電漿光譜數據分析 68
4.5 電漿光譜載氣流量預測 76
4.6 光譜即時控制系統 82
第五章 結論 87
Reference 88
[1] R. A. Afre, N. Sharma, M. Sharon, M. Sharon, Transparent conducting oxide films for various applications: A review, Reviews on Advanced Materials Science, 53(1) (2018) 79-89.
[2] H. Hosono, Recent progress in transparent oxide semiconductors: Materials and device application, Thin Solid Films, 515(15) (2007) 6000-6014.
[3] T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semiconductor Science and Technology, 20(4) (2005) S35.
[4] L. Znaidi, Sol–gel-deposited ZnO thin films: A review, Materials Science and Engineering: B, 174(1-3) (2010) 18-30.
[5] P. Fauchais, M. Vardelle, A. Vardelle, L. Bianchi, Plasma spray: study of the coating generation, Ceramics International, 22(4) (1996) 295-303.
[6] Y. Y. Chen, J. Y. Juang, Enhancement of Ga-doped zinc oxide film properties and deposition rate by multiple deposition using atmosphere pressure plasma jet, Journal of Alloys and Compounds, 694 (2017) 452-458.
[7] Y. C. Chen, P. C. Hsu, L. Xu, J. Y. Juang, Simultaneous enhancement of electrical conductivity, uniformity, and near-infrared transmittance via laser annealing on ZnO: Ga films deposited by atmospheric pressure plasma jet, Journal of Alloys and Compounds, 857 (2021) 157697.
[8] Y. C. Lee, Y. C. Chen, H. T. Lin, L. Xu, M. T. Lee, J. Y. Juang, Maskless deposition of patterned transparent conductive oxides via laser-assisted atmospheric pressure plasma jet, Journal of Alloys and Compounds, 931 (2023) 167607.
[9] H. Conrads, M. Schmidt, Plasma generation and plasma sources, Plasma Sources Science and Technology, 9(4) (2000) 441.
[10] L. Bárdos, H. Baránková, Cold atmospheric plasma: Sources, processes, and applications, Thin Solid Films, 518(23) (2010) 6705-6713.
[11] A. Schutze, J. Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE Transactions on Plasma Science, 26(6) (1998) 1685-1694.
[12] S. Babayan, J. Jeong, V. Tu, J. Park, G. Selwyn, R. Hicks, Deposition of silicon dioxide films with an atmospheric-pressure plasma jet, Plasma Sources Science and Technology, 7(3) (1998) 286.
[13] R. Kumar, G. Kumar, O. Al-Dossary, A. Umar, ZnO nanostructured thin films: Depositions, properties and applications—A review, Materials Express, 5(1) (2015) 3-23.
[14] Z. You, G. Hua, Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering, Journal of Alloys and Compounds, 530 (2012) 11-17.
[15] T. Minami, S. Ida, T. Miyata, Y. Minamino, Transparent conducting ZnO thin films deposited by vacuum arc plasma evaporation, Thin Solid Films, 445(2) (2003) 268-273.
[16] V. Craciun, J. Elders, a.J. Gardeniers, I.W. Boyd, Characteristics of high quality ZnO thin films deposited by pulsed laser deposition, Applied Physics Letters, 65(23) (1994) 2963-2965.
[17] C.-Y. Tsay, C.-W. Wu, C.-M. Lei, F.-S. Chen, C.-K. Lin, Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol–gel process, Thin Solid Films, 519(5) (2010) 1516-1520.
[18] T.P. Rao, M.S. Kumar, N.S. Hussain, Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis, Journal of Alloys and Compounds, 541 (2012) 495-504.
[19] W. K. Chen, J. C. Huang, Y. C. Chen, M. T. Lee, J. Y. Juang, Deposition of highly transparent and conductive Ga-doped zinc oxide films on tilted substrates by atmospheric pressure plasma jet, Journal of Alloys and Compounds, 802 (2019) 458-466.
[20] 陳俞蓁, 雷射輔助噴射式大氣電漿系統開發與應用於鍍製透明導電薄膜與圖樣, (2020).
[21] W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, Y. L. Chen, Effect of post-annealing on the optoelectronic properties of ZnO: Ga films prepared by pulsed direct current magnetron sputtering, Thin Solid Films, 518(14) (2010) 3882-3885.
[22] G. Jo, J. H. Koh, Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications, Ceramics International, 45(5) (2019) 6190-6197.
[23] 黃京淇, 雷射輔助噴射式大氣電漿鍍製微米級鎵摻雜氧化鋅薄膜導線研究及電漿驟冷效應分析與改良, (2019).
[24] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research, IEEE Access, 8 (2020) 85714-85728.
[25] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, W. Shi, Edge computing for autonomous driving: Opportunities and challenges, Proceedings of the IEEE, 107(8) (2019) 1697-1716.
[26] J. Mirapeix, A. Cobo, O. Conde, C. Jaúregui, J. López-Higuera, Real-time arc welding defect detection technique by means of plasma spectrum optical analysis, Ndt & E International, 39(5) (2006) 356-360.
[27] C. Y. Wang, T. S. Ko, C. C. Hsu, Interpreting convolutional neural network for real-time volatile organic compounds detection and classification using optical emission spectroscopy of plasma, Analytica Chimica Acta, 1179 (2021) 338822.
[28] J. R. Beattie, F. W. Esmonde-White, Exploration of principal component analysis: deriving principal component analysis visually using spectra, Applied Spectroscopy, 75(4) (2021) 361-375.
[29] C. Y. Wang, C. C. Hsu, Development and testing of an efficient data acquisition platform for machine learning of optical emission spectroscopy of plasmas in aqueous solution, Plasma Sources Science and Technology, 28(10) (2019) 105013.
[30] C. Y. Wang, T. S. Ko, C. C. Hsu, Machine learning with explainable artificial intelligence vision for characterization of solution conductivity using optical emission spectroscopy of plasma in aqueous solution, Plasma Processes and Polymers, 18(12) (2021) 2100096.
[31] R. Hernández-Alvarado, L. G. García-Valdovinos, T. Salgado-Jiménez, A. Gómez-Espinosa, F. Fonseca-Navarro, Neural network-based self-tuning PID control for underwater vehicles, Sensors, 16(9) (2016) 1429.
[32] J. Muliadi, B. Kusumoputro, Neural network control system of UAV altitude dynamics and its comparison with the PID control system, Journal of Advanced Transportation, 2018 (2018) 1-18.
[33] R. Hernández-Alvarado, L.G. García-Valdovinos, T. Salgado-Jiménez, A. Gómez-Espinosa, F. Fonseca-Navarro, Neural network-based self-tuning PID control for underwater vehicles, Sensors, 16(9) (2016) 1429.
[34] I. Miccoli, F. Edler, H. Pfnür, C. Tegenkamp, The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems, Journal of Physics: Condensed Matter, 27(22) (2015) 223201.
[35] 陳冠曄, 噴射式大氣電漿系統之設計架設與大面積氧化鋅鎵薄膜均勻度之改善, (2016).
[36] 陳于壹, 噴射式大氣電漿系統之設計架設與多次沉積氧化鋅鎵薄膜性質之量測與模擬, (2016).
(此全文20280903後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *