帳號:guest(3.147.60.148)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃世鈞
作者(外文):Huang, Shih-Chun
論文名稱(中文):開發可分析片段線性系統非線性振動模態的混合延拓計算技術
論文名稱(外文):A Hybrid Continuation Framework for Analyzing Nonlinear Normal Modes of Piecewise-Linear Systems
指導教授(中文):田孟軒
指導教授(外文):Tien, Meng-Hsuan
口試委員(中文):王怡仁
宋振國
口試委員(外文):Wang, Yi-Ren
Sung, Cheng-Kuo
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033563
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:47
中文關鍵詞:非線性模態非線性系統片段線性系統非平滑振盪子數值分析
外文關鍵詞:Nonlinear normal modesnonlinear systempiecewise linear systemnon-smooth oscillatornumerical analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:96
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
預測和計算具有間隙和預應力的片段線性系統的模態特性相當具有挑戰性。片段線性剛性引起的非線性特性,限制了使用高效的線性模態分析方法的可能性。目前,計算這些系統的非線性模態的主要方法是使用數值延拓計算技術(numerical continuation framework)。這種技術結合了數值積分、打靶法和擬弧長延拓法,通過跌代計算的方式獲得系統的非線性模態。然而,這種計算方法的成本會隨著系統的非線性複雜度和模型大小的增加而增加。本研究提出了一種混合延拓計算技術,結合了解析和數值方法,能夠有效地計算片段線性系統的非線性模態。這種混合延拓計算技術使用半解析方法進行跌代打靶程序,因此能夠大幅減少傳統數值延拓計算技術的計算負擔。本文在具有間隙的質量彈簧阻尼系統上驗證了此計算技術,並使用傳統數值延拓計算技術進行了驗證比較。本文提出的方法能夠顯著的提升計算效率。
The prediction of the modal properties of piecewise-linear mechanical systems with clearances and prestress presents a computational challenge since the nonlinearity induced by piecewise-linear stiffness eliminates the use of efficient linear modal analysis techniques. The most common approach to obtain these structural systems' nonlinear normal modes (NNMs) is a numerical framework that integrates numerical integration, the shooting method, and the pseudo-arclength continuation scheme. This numerical continuation framework (NCF) computes NNMs through iterative numerical calculations; thus, the computational cost of the nonlinear modal analysis of complex nonlinear systems, or piecewise-linear systems in particular, becomes prohibitively expensive as the model size increases. In this work, a hybrid continuation framework combining analytic and numerical methods is proposed to efficiently compute the NNMs of piecewise-linear non-smooth systems. This new hybrid framework uses a semi-analytic method to conduct the iterative shooting procedure; thus, the computational burden of the numerical continuation can be significantly reduced. The proposed method is demonstrated on a spring-mass oscillator with contact elements, and the NNMs obtained using the proposed method are validated by those computed using the traditional numerical continuation framework. The modal properties of the system can be computed using the proposed framework with significant computational savings.
摘要 I
Abstract II
Acknowledgment III
Content IV
List of Figures V
List of Tables VIII
Nomenclature IX
Chapter 1. Introduction 1
Chapter 2. Methodology 4
2.1. The adapted HSNC method 4
2.2. Shooting method and continuation of periodic solutions 11
Chapter 3. Results and Discussion 15
3.1. Demonstration of NCF 15
3.2. n-DOF spring-mass system with single bilinear stiffness 23
3.3. n-DOF spring-mass system with two bilinear stiffness 33
Chapter 4. Conclusions and Future Work 45
Chapter 5. References 46

O. V. Shiryayev and J. C. Slater, "Detection of Fatigue Cracks Using Random Decrement Signatures," Structural Health Monitoring-an International Journal, vol. 9, no. 4, pp. 347-360, Jul 2010, doi: 10.1177/1475921710361324.
[2] M. Allara, "A model for the characterization of friction contacts in turbine blades," Journal of Sound and Vibration, vol. 320, no. 3, pp. 527-544, Feb 2009, doi: 10.1016/j.jsv.2008.08.016.
[3] B. B. He, H. J. Ouyang, S. W. He, X. M. Ren, and Y. G. Mei, "Dynamic analysis of integrally shrouded group blades with rubbing and impact," Nonlinear Dynamics, vol. 92, no. 4, pp. 2159-2175, Jun 2018, doi: 10.1007/s11071-018-4187-0.
[4] V. Jaumouille, J. J. Sinou, and B. Petitjean, "An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems-Application to bolted structures," Journal of Sound and Vibration, vol. 329, no. 19, pp. 4048-4067, Sep 2010, doi: 10.1016/j.jsv.2010.04.008.
[5] S. Zucca, C. M. Firrone, and M. M. Gola, "Numerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loads," Nonlinear Dynamics, vol. 67, no. 3, pp. 1943-1955, Feb 2012, doi: 10.1007/s11071-011-0119-y.
[6] A. Donmez and A. Kahraman, "Vibro-Impact Motions of a Three-Degree-of-Freedom Geartrain Subjected to Torque Fluctuations: Model and Experiments," Journal of Computational and Nonlinear Dynamics, vol. 17, no. 12, Dec 2022, Art no. 121002, doi: 10.1115/1.4055595.
[7] M. H. Tien and K. D'Souza, "Method for controlling vibration by exploiting piecewise-linear nonlinearity in energy harvesters," Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 476, no. 2233, Jan 2020, Art no. 20190491, doi: 10.1098/rspa.2019.0491.
[8] R. J. Allemang, Investigation of some multiple input/output frequency response function experimental modal analysis techniques. University of Cincinnati, 1980.
[9] R. M. Rosenberg, "The normal modes of nonlinear n-degree-of-freedom systems," 1962.
[10] A. F. Vakakis and R. H. Rand, "NORMAL-MODES AND GLOBAL DYNAMICS OF A 2-DEGREE-OF-FREEDOM NONLINEAR-SYSTEM .2. HIGH-ENERGIES," International Journal of Non-Linear Mechanics, vol. 27, no. 5, pp. 875-888, Sep 1992, doi: 10.1016/0020-7462(92)90041-5.
[11] S. W. Shaw and C. Pierre, "Normal modes for non-linear vibratory systems," Journal of sound and vibration, vol. 164, no. 1, pp. 85-124, 1993.
[12] M. Peeters, R. Viguie, G. Serandour, G. Kerschen, and J. C. Golinval, "Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques," Mechanical Systems and Signal Processing, vol. 23, no. 1, pp. 195-216, Jan 2009, doi: 10.1016/j.ymssp.2008.04.003.
[13] A. H. Nayfeh and B. Balachandran, Applied nonlinear dynamics: analytical, computational, and experimental methods. John Wiley & Sons, 2008.
[14] T. F. Chan, "Newton-like pseudo-arclength methods for computing simple turning points," SIAM journal on scientific and statistical computing, vol. 5, no. 1, pp. 135-148, 1984.
[15] S. Peter, F. Schreyer, and R. I. Leine, "A method for numerical and experimental nonlinear modal analysis of nonsmooth systems," Mechanical Systems and Signal Processing, vol. 120, pp. 793-807, Apr 2019, doi: 10.1016/j.ymssp.2018.11.009.
[16] N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, 1988.
[17] J. Alves, N. Peixinho, M. T. da Silva, P. Flores, and H. M. Lankarani, "A comparative study of the viscoelastic constitutive models for frictionless contact interfaces in solids," Mechanism and Machine Theory, vol. 85, pp. 172-188, Mar 2015, doi: 10.1016/j.mechmachtheory.2014.11.020.
[18] M. H. Tien and K. D'Souza, "Analyzing Bilinear Systems Using a New Hybrid Symbolic-Numeric Computational Method," Journal of Vibration and Acoustics-Transactions of the Asme, vol. 141, no. 3, Jun 2019, Art no. 031008, doi: 10.1115/1.4042520.
[19] M. H. Tien and K. D'Souza, "Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC," Nonlinear Dynamics, vol. 96, no. 2, pp. 1115-1131, Apr 2019, doi: 10.1007/s11071-019-04844-7.
[20] G. Kerschen, M. Peeters, J. C. Golinval, and A. F. Vakakis, "Nonlinear normal modes, Part I: A useful framework for the structural dynamicist," Mechanical Systems and Signal Processing, vol. 23, no. 1, pp. 170-194, Jan 2009, doi: 10.1016/j.ymssp.2008.04.002.
[21] I. The MathWorks, "MATLAB version 9.13.0.2193358 (R2022b) Update 5," The MathWorks, Inc., 2022. [Online]. Available: https://www.mathworks.com.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *