帳號:guest(3.144.252.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林浩洲
作者(外文):Lin, Hao-Zhou
論文名稱(中文):環氧樹脂模封材料於等溫與變溫固化收縮模型引致之翹曲模擬分析
論文名稱(外文):Simulation Analysis of Warpage Induced by Cure Shrinkage Model of Epoxy Molding Compound under Isothermal and Variable Temperature Conditions
指導教授(中文):李昌駿
指導教授(外文):Lee, Chang-Chun
口試委員(中文):鄭仙志
施孟鎧
口試委員(外文):Cheng, Hsien-Chie
Shih, Meng-Kai
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033553
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:117
中文關鍵詞:環氧樹脂模封材料應力鬆弛固化收縮Two Domain Modified Tait ModelIsothermal Model有限元素法模擬預估翹曲
外文關鍵詞:Epoxy molding compoundStress relaxationCure shrinkageTwo Domain Modified Tait ModelIsothermal ModelFinite element methodWarpage prediction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:62
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
於先進的電子封裝產品其提供高功率、高密度、輕、薄及微小化等優勢於近年來受到業界所重視。但由於產品封裝過程將引致翹曲與變形的發生;通常為因結構材料之熱膨脹係數不同Coefficient of Thermal Extension(CTE) Mismatch 而產生。其中,結構若大量使用環氧樹脂模封材料(Epoxy Molding Compound,EMC),而EMC材料具有黏彈性質及固化收縮率之特性,此特性將對於封裝結構的應力及翹曲影響程度是不可忽視的。目前已有學者整理出預測模封材料之方法,然對於固化收縮部分尚未獲得良好之結果。因此,本研究為釐清模封材料於固化製程條件下其對應之固化收縮數學模型差異性,將對Two Domain Modified Tait Model進行分析,並建立一擬合流程及固化收縮量之計算,並與Isothermal Model比較。為了能預測結構之翹曲現象,將建構一製程導向之有限元素模擬手法,分析由玻璃基板與模封材料組成之雙層板模型隨製程變化之翹曲值。
為了取得模擬分析所需之材料性質,本研究藉由實驗量測一系列之模封材料其模擬所需之數種材料特性,包含固化反應動力學模型、固化收縮之等溫(Isothermal)與變溫(Two Domain Modified Tait)模型、廣義麥克斯威爾模型,以及凝膠點之固化度等,將前述材料性質施加於模擬分析,並同時考慮製程條件對於結構之翹曲影響。於模擬方法中,模封材料之模數以溫度與時間相關之黏彈性質施加;而固化收縮則以一常數之固化收縮並計算為初始應變(Initial Strain)施加。藉由上述模擬方法分析之結果顯示,考慮兩種不同固化收縮模型與實際載具之翹曲值皆有良好的一致性,但相較於Two Domain Modified Tait Model之固化收縮量影響之翹曲值,更合乎實際載具情況,其誤差值約為1 %。此外,為了驗證黏彈性質之應力鬆弛現象,將進行不同後固化(Post Curing)時間之製程條件改變,分析結果顯示,在後固化較長時間下EMC材料內部應力有更多時間進行鬆弛,引致結構翹曲量有明顯降低之表現。本研究以建立Two Domain Modified Tait Model之擬合流程及固化收縮量之計算,並以黏彈性質解釋時間與溫度對翹曲之重要性。
In advanced electronic packaging products, the advantages of providing high power, high density, lightweight, thinness, and miniaturization have been increasingly recognized by the industry in recent years. However, the packaging process of these products can lead to warpage and deformation, often caused by the mismatch in the coefficient of thermal expansion(CTE) of structural materials. In particular, when a significant amount of epoxy molding compound(EMC) is used as the packaging material, the viscoelastic properties and cure shrinkage rate of EMC can have a significant impact on the stress and warpage of the package structure. Currently, some researchers have developed methods to predict the behavior of molding materials. However, the prediction of cure shrinkage has not yielded satisfactory results. Therefore, this study aims to clarify the differences in mathematical models for the cure shrinkage of molding materials under curing process conditions. The Two Domain Modified Tait Model will be analyzed, and a fitting process and calculation of cure shrinkage will be established and compared with the Isothermal Model. To predict the warpage phenomenon in the structure, a process-oriented finite element(FE) simulation approach will be developed. This approach will analyze the warpage values of a bi-layer model composed of a glass substrate and molding material as they change throughout the manufacturing process.
In order to obtain the material properties for simulation analysis, this study conducted experimental measurements on a series of molding materials to obtain several key material characteristics. These include the Cure Kinetics Model, isothermal and variable temperature cure shrinkage models, Generalized Maxwell Model, and the degree of cure at gel point. These material properties were applied in the simulation analysis, while also considering the influence of process conditions on the warping of the structure. In the simulation approach, the modulus of the molding material was characterized by time-temperature-dependent viscoelastic properties. Cure shrinkage was incorporated as a constant value and computed as an initial strain applied. The results of the analysis using this simulation approach demonstrated a strong correlation between the warpage values obtained from considering two different cure shrinkage models and those observed in the actual component. However, when compared to the warpage values influenced by the cure shrinkage of the Two Domain Modified Tait Model, the values were more consistent with the actual package, with a deviation of approximately 1%. Furthermore, to validate the stress relaxation phenomenon of the viscoelasticity, various post-curing times were employed as changes to the process conditions. The analysis results indicated that longer post-curing times allowed more time for internal stress relaxation within the EMC material, leading to a noticeable reduction in structural warpage. This study established a fitting process and calculation for Two Domain Modified Tait Model and used viscoelasticity to explain the significance of time and temperature on warpage.
摘要 I
ABSTRACT III
目錄 V
圖目錄 IX
表目錄 XVI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 固化收縮與黏彈性質之理論應用 3
1.3.2 有限元素模擬之翹曲估算分析 10
1.4 研究目標 17
第二章 基礎理論 19
2.1 高分子材料固化反應 19
2.1.1 固化反應行為 19
2.1.2 固化反應動力學模型分析 21
2.2 黏度介紹 24
2.2.1 黏度之力學行為與數學模型 24
2.2.2 黏度之量測理論 27
2.3 固化收縮 29
2.3.1 固化體積變化之力學原理 29
2.3.2 固化收縮量測與相對應之數學模型 34
2.4 黏彈性力學理論 39
2.4.1 黏彈力學行為分析 39
2.4.2 時變性黏彈力學之數學模型 40
2.4.3 動態機械分析儀之量測原理 46
2.4.4 時間-溫度重疊原理 51
第三章 環氧樹脂模封材料性質量測實驗 53
3.1 DSC實驗量測 53
3.1.1 DSC量測原理 53
3.1.2 DSC實驗流程與結果 55
3.1.3 固化動力學模型擬合參數結果 57
3.2 黏度量測實驗 59
3.2.1 凝膠點量測原理與實驗條件 59
3.2.2 黏度量測實驗結果與凝膠點取得 60
3.3 固化收縮量測實驗 61
3.3.1 P-V-T-C實驗流程與結果 61
3.3.2 P-V-T-C數學模型擬合參數 66
3.4 DMA量測實驗 70
3.4.1 DMA實驗流程與結果 70
3.4.2 主曲線與WLF方程式擬合參數結果 72
3.4.3 廣義麥克斯威爾模型擬合參數結果 75
第四章 製程模擬結果驗證與討論 78
4.1 固化製程導向與有限元素模擬分析 78
4.1.1 載具模型之建立 78
4.1.2 載具之固化製程步驟 81
4.1.3 估算製程期間之固化度變化 83
4.1.4 估算製程期間之溫度偏移因子 84
4.1.5 等溫條件下之固化收縮量計算 85
4.1.6 變溫條件下之固化收縮量計算 86
4.1.7 模擬分析設定 90
4.2 實際載具之量測方法 92
4.3 兩種固化模型與實驗翹曲值驗證 93
4.4 後固化製程時間參數影響之翹曲值 99
第五章 結論與未來方向 107
5.1 結論 107
5.2 未來方向 107
參考文獻 109
[1]M. Sadeghinia, K. M. B. Jansen, and L. J. Ernst, “Characterization and modeling the thermo-mechanical cure-dependent properties of epoxy molding compound,” International Journal of Adhesion and Adhesives, vol. 32, pp. 82-88, Jan. 2012.

[2]S. P. Phansalkar, C. Kim, and B. Han, “Effect of critical properties of epoxy molding compound on warpage prediction: A critical review,” Microelectronics Reliability, vol. 130, pp. 114480, Mar. 2022.

[3]J. H. Baek, D. W. Park, G. H. Oh, D. O. Kawk, S. S. Park, and H. S. Kim, “Effect of cure shrinkage of epoxy molding compound on warpage behavior of semiconductor package,” Materials Science in Semiconductor Processing, vol. 148, pp. 106758, Sep. 2022.

[4]K. E. J. Barrett, “Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter,” Journal of Applied Polymer Science, vol. 11, no. 9, pp. 1617-1626, Sep. 1967.

[5]M. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polymer Engineering & Science, vol. 13, no. 1, pp. 59-64, Jan. 1973.

[6]M. R. Kamal, “Thermoset characterization for moldability analysis,” Polymer Engineering & Science, vol. 14, no. 3, pp. 231-239, Mar. 1974.

[7]A. Skordos and I. Partridge, “Cure kinetics modeling of epoxy resins using a non‐parametric numerical procedure,” Polymer Engineering & Science, vol. 41, no. 5, pp. 793-805, Apr. 2001.

[8]G. W. H. Höhne, W. Hemminger, and H. J. Flammersheim, “Differential scanning calorimetry,” Springer, 2003.

[9]F. Jiang and D. Drummer, “Curing kinetic analysis of acrylate photopolymer for additive manufacturing by photo-DSC,” Polymers, vol. 12, no. 5, pp. 1080, Apr. 2020.

[10]B. E. Abali, M. Zecchini, G. Daissè, I. Czabany, W. Gindl Altmutter, and R. Wan Wendner, “Cure kinetics and inverse analysis of epoxy-amine based adhesive used for fastening systems,” Materials, vol. 14, no. 14, pp. 3853, Jul. 2021.

[11]E. Franieck, M. Fleischmann, O. Hölck, L. Kutuzova, and A. Kandelbauer, “Cure kinetics modeling of a high glass transition temperature epoxy molding compound (EMC) based on inline dielectric analysis,” Polymers, vol. 13, no. 11, pp. 1734, May 2021.

[12]Y. Yang, B. Plovie, G. Chiesura, T. Vervust, L. Daelemans, D. E. Mogosanu, P. Wuytens, K. D. Clerck, J. Vanfleteren, “Fully integrated flexible dielectric monitoring sensor system for real-time in situ prediction of the degree of cure and glass transition temperature of an epoxy resin,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-9, Feb. 2021.

[13]X. Wang, Y. Andriani, S. Liu, Z. Chen, and X. Zhang, “Dynamic mechanical analysis and viscoelastic behavior of epoxy molding compounds used in fan-out wafer-level packaging,” 2018 IEEE 20th Electronics Packaging Technology Conference, pp. 585-590, Dec. 2018.

[14]J. Pascault and R. Williams, “Glass transition temperature versus conversion relationships for thermosetting polymers,” Journal of Polymer Science Part B: Polymer Physics, vol. 28, no. 1, pp. 85-95, Jan. 1990.

[15]H. Yu, S. Mhaisalkar, and E. Wong, “Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer,” Journal of Electronic Materials, vol. 34, no.8, pp. 1177-1182, Aug. 2005.

[16]O. G. Kravchenko, C. Li, A. Strachan, S. G. Kravchenko, and R. B. Pipes, “Prediction of the chemical and thermal shrinkage in a thermoset polymer,” Composites Part A: Applied Science and Manufacturing, vol. 66, pp. 35-43, Nov. 2014.

[17]Y. Nawab, P. Casari, N. Boyard, and F. Jacquemin, “Characterization of the cure shrinkage, reaction kinetics, bulk modulus and thermal conductivity of thermoset resin from a single experiment,” Journal of Materials Science, vol. 48, no.6, pp. 2394-2403, Mar. 2013.

[18]S. J. Hwang and Y. S. Chang, “PVTC equation for epoxy molding compound,” IEEE Transactions on Components and Packaging Technologies, vol. 29, no. 1, pp. 112-117, Feb. 2006.

[19]Y. S. Chang, S. J. Hwang, H. H. Lee, and D. Y. Huang, “Study of PVTC relation of EMC,” Journal of Electronic Packaging, vol. 124, no. 4, pp. 371-373, Dec. 2002.

[20]S. Han and K. Wang, “Integrated flow analysis during filling and post-filling stage of semiconductor encapsulation,” Journal of Electronic Packaging, vol. 122, no. 1, pp. 20-27, Mar. 2000.

[21]C. C. Lee, C. C. Lee, and C. P. Chang, “Simulation methodology development of warpage estimation for epoxy molding compound under considerations of stress relaxation characteristics and curing conditions applied in semiconductor packaging,” Materials Science in Semiconductor Processing, vol. 145, pp. 106637, Jul. 2022.

[22]J. Wang, C. Hopmann, M. Schmitz, T. Hohlweck, and J. Wipperfürth, “Modeling of pvT behavior of semi-crystalline polymer based on the two-domain Tait equation of state for injection molding,” Materials & Design, vol. 183, pp. 108149, Dec. 2019.

[23]K. E. Ong, W. K. Loh, R. W. Kulterman, C. C. Hsu, J. A. Wang, and H. Fu, “Molded electronic package warpage predictive modelling methodologies,” in 2019 International Conference on Electronics Packaging, Niigata, Japan, 2019, pp. 13-19.

[24]J. Castro and C. Macosko, “Kinetics and rheology of typical polyurethane reaction injection molding systems,” in Society of Plastics Engineers (Technical Papers), New York, USA, 1980, pp. 434-438.

[25]H. Yu, S. G. Mhaisalkar, and E. H. Wong, “Observations of gelation and vitrification of a thermosetting resin during the evolution of polymerization shrinkage,” Macromolecular Rapid Communications, vol. 26, no. 18, pp. 1483-1487, Sep. 2005.

[26]G. A. Al-Muntasheri, H. A. Nasr El Din, and I. A. Hussein, “A rheological investigation of a high temperature organic gel used for water shut-off treatments,” Journal of Petroleum Science and Engineering, vol. 59, no. 1-2, pp. 73-83, Oct. 2007.

[27]Y. Yu, X. Yang, Q. Liu, N. She, D. Liu, and W. Huang, “Curing and rheological study of epoxy molding compound with novel phosphonium silicate latent accelerators,” Polymers for Advanced Technologies, vol. 33, no. 9, pp. 2908-2920, Jun. 2022.

[28]J. C. Maxwell, “On the dynamical theory of gases,” Philosophical Transactions of the Royal Society of London, vol. 157, no. 2, pp. 49- 88, Jan. 1867.


[29]E. Wiechert, “Ueber elastische nachwirkung,” Ph. D. dissertation, Department of Physic, Königsberg Universit, Königsberg, Germany, 1889.

[30]M. Sadeghinia, K. M. Jansen, and L. J. Ernst, “Characterization of the viscoelastic properties of an epoxy molding compound during cure,” Microelectronics Reliability, vol. 52, no. 8, pp. 1711-1718, Aug. 2012.

[31]J. D. Ferry, “Viscoelastic properties of polymers,” John Wiley & Sons, 1980.

[32]M. L. Williams, R. F. Landel, and J. D. Ferry, “The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids,” Journal of the American Chemical society, vol. 77, no. 14, pp. 3701-3707, Feb. 1955.

[33]D. Ljubić, M. Stamenović, C. Smithson, M. Nujkić, B. Međo, and S. Putić, “Time: Temperature superposition principle: Application of WLF equation in polymer analysis and composites,” Zaštita materijala, vol. 55, no. 4, pp. 395-400, May 2014.

[34]A. Genovese, F. Farroni, and A. Sakhnevych, “Fractional calculus approach to reproduce material viscoelastic behavior, including the time–temperature superposition phenomenon,” Polymers, vol. 14, no. 20, pp. 4412, Oct. 2022.


[35]C. Kim, T. I. Lee, M. S. Kim, and T. S. Kim, “Mechanism of warpage orientation rotation due to viscoelastic polymer substrates during thermal processing,” Microelectronics Reliability, vol. 73, pp. 136-145, Jun. 2017.

[36]Z. Chen, X. Zhang, S. P. S. Lim, S. S. B. Lim, B. L. Lau, Y. Han, M. C. Jong, S. Liu, X. Wang, Y. Andriani, “Wafer level warpage modelling and validation for FOWLP considering effects of viscoelastic material properties under process loadings,” in IEEE 69th Electronic Components and Technology Conference, Las Vegas, USA, 2019, pp. 1543-1549.

[37]C. Chen, M. Su, R. Ma, Y. Zhou, J. Li, and L. Cao, “Investigation of warpage for multi-die fan-out wafer-level packaging process,” Materials, vol. 15, no. 5, pp. 1683, Feb. 2022.

[38]S. Y. Teng and S.-J. Hwang, “Predicting the process induced warpage of electronic packages using the P–V–T–C equation and the Taguchi method,” Microelectronics Reliability, vol. 47, no. 12, pp. 2231-2241, Dec. 2007.

[39]M. Y. Lin, Y. J. Zeng, S. J. Hwang, M. H. Wang, H. P. Liu, and C. L. Fang, “Warpage and residual stress analyses of post-mold cure process of IC packages,” The International Journal of Advanced Manufacturing Technology, vol. 124, no. 3-4, pp. 1017-1039, Jul. 2023.


[40]D. Spini and M. Rovitto, “Impact of viscoelastic properties on package warpage prediction,” in 2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Graz, Austria, 2023, pp. 1-8.

[41]S. S. Yeh, P. Y. Lin, K. C. Lee, J. H. Wang, W. Y. Lin, M. C. Yew, P. C. Lai, C. K. Hsu, C. C. Yang, L. L. Liao, Y. S. Lin, S. P. Jeng, “Warpage modeling and characterization of the cure-dependent chemical shrinkage and viscoelastic relaxation for cured molding process,” in 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan , 2018, pp. 130-134.

[42]S. S. Yeh, P. Y. Lin, K. C. Lee, J. H. Wang, W. Y. Lin, M. C. Yew, P. C. Lai, S. T. Leu, S. P. Jeng, “Warpage modeling and characterization of the viscoelastic relaxation for cured molding process in fan-out packages,” in 2017 IEEE 67th Electronic Components and Technology Conference, Orlando, FL, 2017, pp. 841-846.

[43]H. C. Cheng and Y. C. Liu, “Warpage characterization of molded wafer for fan-out wafer-level packaging,” Journal of Electronic Packaging, vol. 142, no. 1, pp. 011004, Sep. 2020.

[44]J. Castro and C. Macosko, “Studies of mold filling and curing in the reaction injection molding process,” AIChE Journal, vol. 28, no. 2, pp. 250-260, Mar. 1982.

[45]D. U. Shah and P. J. Schubel, “Evaluation of cure shrinkage measurement techniques for thermosetting resins,” Polymer Testing, vol. 29, no. 6, pp. 629-639, Sep. 2010.

[46]S. J. Hwang and Y. S. Chang, “Isobaric cure shrinkage behaviors of epoxy molding compound in isothermal state,” Journal of Polymer Science Part B: Polymer Physics, vol. 43, no. 17, pp. 2392-2398, Jul. 2005.

[47]K. P. Menard and N. Menard, “Dynamic mechanical analysis,” CRC press, 2020.

[48]N. Ersoy and M. Tugutlu, “Cure kinetics modeling and cure shrinkage behavior of a thermosetting composite,” Polymer Engineering & Science, vol. 50, no. 1, pp. 84-92, Jan. 2010.

(此全文20280808後開放外部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *