帳號:guest(18.219.206.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王靖瑜
作者(外文):Wang, Jing-Yu
論文名稱(中文):等效理論與全域—局部有限元素法應用於封裝全模型應力分析之適用性研究
論文名稱(外文):Applicability Investigation of Equivalent Theory and Global-Local Finite Element Method in Stress Analysis of Full Model Package
指導教授(中文):江國寧
指導教授(外文):CHIANG, KUO-NING
口試委員(中文):袁長安
陳國明
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:110033550
出版年(民國):112
畢業學年度:112
語文別:中文
論文頁數:89
中文關鍵詞:等效理論全域—局部有限元素法多點約束有限元素法球柵陣列封裝熱應力分析
外文關鍵詞:Equivalent TechniqueGlobal-Local Finite Element MethodMulti-Point ConstraintsBall Grid Array PackageThermal Stress Analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,封裝體為滿足市場需求而不斷走向小型化和高電晶體密度來提升效能,然而隨著時間推移,此趨勢面臨到物理與技術上的極限,人們轉而發展2.5D或3D封裝與異質整合(Heterogeneous Integration)等技術來達成更高的效能。然而此技術的發展亦須面對新的挑戰,例如:在一封裝體中含有多個晶片容易造成散熱困難,另外封裝體整體結構複雜性大幅增加會導致其在設計、製造和測試過程的成本上升,此時引入有限元素法進行模擬有助於解決問題,透過模擬能夠快速分析結構中的熱點或應力集中位置,以使作為依據來更改結構或適當增加散熱元件,此外透過模擬也能大幅減少過往進行可靠度測試實驗所需耗費的時間成本,使封裝體能夠更快速進入市場。
然而,即便模擬能夠減少測試時間並幫助分析破壞成因用以改善設計,但隨著封裝體的複雜度增加,於模擬中建立模型和求解所需的時間大幅上升,為解決此問題需要引入簡化模型的方法。等效理論和全域—局部有限元素法為兩有效簡化模型的方法,然而於模擬中使用此兩種方法仍存在些許不確定性,若欲於複雜封裝體模擬中採用此兩簡化方式,其適用性需要經過驗證。此外,隨著封裝體微小化和功率增加,可能產生在原先設計尺寸下不存在的破壞,例如:基板(Substrate)線路因電子遷移(Electromigration)產生電氣失效。電子遷移會受到多種物理因素影響,例如:應力、溫度和電流密度等,且各因素之間可能產生交互作用。
本研究主要分為兩部分:以多個簡單複合材料模型測試等效理論公式之準確性;以PCB線路中的破壞做為案例,選用結構較為簡單的球柵陣列(Ball Grid Array, BGA)封裝作為載體,測試於一模型中同時採用等效理論和全域—局部有限元素法的情況下,是否能得到合理的模擬結果使我們能夠快速推得容易產生失效位置,藉此驗證簡化模型方法的適用性,此研究結果可推廣至結構更複雜的封裝體中—例如小晶片封裝(Chiplet),作為其參考依據。
In recent years, to satisfy market demands, packages become smaller and the transistor density become higher in order to enhance performance. However, as time progresses, this trend faces physical and technological limits. To push the limit, advanced packaging techniques such as 2.5D or 3D packaging and heterogeneous integration has developed. However, the development of these package also brings about new challenges. For instance, incorporating multiple chips within a single package can lead to thermal dissipation difficulties, and the increased complexity of package structure leads to rising costs in design, manufacturing, and testing processes. In such cases, finite element method can offer solutions. With FEM simulation, we could rapidly find thermal hotspots or stress concentration areas within the structure, and we could modify the structure or design base on the results. Additionally, simulations significantly reduce the time and cost required for reliability testing experiments, allowing packages to enter the market more quickly.
Even though simulations can reduce testing time and aid in analyzing the causes of failures for design improvement, as the complexity of the packaging increases, the time required to establish models and solve increases significantly. To address this, simplifying methods need to be introduced. Equivalent theory and global-local finite element methods are two effective approaches for simplifying models. However, there still exists some uncertainty when applying these methods in simulations. If these methods are to be applied in complex packaging simulation, their applicability needs to be validated.
Furthermore, with the miniaturization of packaging and an increase in power, the possibility of failures that did not exist within the original design dimensions may arise. For example, in Substrate circuits, electrical failures can occur due to electromigration. Electromigration is influenced by various physical factors such as stress, temperature, and current density. These physical factors may interact with each other.
This research can be primarily divided into two parts: one is testing the accuracy of equivalent theory formulas by using multiple simple composite material models. And the other is taking failure in Substrate circuits as a case study. A relatively simple packaging, the Ball Grid Array (BGA) package, is chosen as the test vehicle. The aim is to test whether reasonable simulation results can be obtained when both equivalent theory and global-local finite element methods are applied in a single model. The simulation results help us to quickly find out areas that prone to failure. Through this process, the applicability of the simplified method can be validated. The findings of this study can be extended to more complex packaging structures, such as chiplets ,serving as a reference.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 XI

第一章 緒論 ........................................................................................................................... 12
1.1 研究動機 ................................................................................................................. 12
1.2 文獻回顧 ................................................................................................................. 14
1.2.1 全域-局部有限元素法 ....................................................................................... 14
1.2.2 等效理論分析 ....................................................................................................... 18
1.2.3 熱應力分析 ........................................................................................................... 23
1.2.4 小晶片封裝(Chiplet) ............................................................................................. 23
1.3 研究目標 ................................................................................................................. 25
第二章 基礎理論 ................................................................................................................... 27
2.1 有限元素法基礎理論 ............................................................................................. 27
2.1.1 材料線彈性理論 ................................................................................................... 27
2.1.2 材料非線性理論 ................................................................................................... 31
2.1.3 數值收斂方法與準則 ........................................................................................... 32
2.1.4 材料應變硬化法則(Strain Hardening Rule) ................................................... 33
A. 等向硬化法則(Isotropic Hardening Rule) .......................................................... 34
B. 動態硬化法則(Kinematic Hardening Rule) ....................................................... 35
2.1.5 Chaboche 模型 ...................................................................................................... 36
2.1.6 錫球外型預測 ....................................................................................................... 37
2.2 多點約束方程法 ..................................................................................................... 39
2.2.1 連接不同元素類型 ............................................................................................... 39
2.2.2 連接不同疏密程度之網格 ................................................................................... 40
2.2.3 建立剛性區域 ....................................................................................................... 42
2.3 等效材料參數 ......................................................................................................... 42
2.3.1 混合定律(Rule of Mixture, ROM)與反混合定律(Inverse Rule of Mixture,
IROM) ................................................................................................................... 42
A. 楊氏係數、剪切係數與普松比 ......................................................................... 42
B. 熱膨脹係數 ......................................................................................................... 46
2.3.2 能量法(Energy Principles) .................................................................................... 48
A. 最小勢能原理(Principle of Minimum Potential Energy)與最小補能原理
(Principle of Minimum Complementary Energy) .................................................... 48
第三章 有限元素之模型建立與驗證 ................................................................................... 51
3.1 有限元素模型基本假設 ......................................................................................... 51
3.2 模擬材料選擇 ......................................................................................................... 52
3.3 網格劃分與元素 ..................................................................................................... 56
3.4 模型邊界條件 ......................................................................................................... 56
3.5 模擬條件負載 ......................................................................................................... 58
3.6 有限元素模型建構 ................................................................................................. 58
第四章 研究結果分析與討論 ............................................................................................... 60
4.1 多點約束方程法驗證 ............................................................................................. 60
4.1.1 連接不同元素類型 ............................................................................................... 60
4.1.2 連接不同疏密程度之網格 ................................................................................... 61
4.2 等效材料參數驗證 ................................................................................................. 66
4.2.1 等效熱膨脹係數驗證 ........................................................................................... 66
4.2.2 等效楊氏係數驗證 ............................................................................................... 70
4.3 BGA 模型模擬結果分析 ........................................................................................ 73
結論與未來展望 ..................................................................................................................... 80 參考文獻 ................................................................................................................................. 82
[1] S.-H. Huh, A.-S. Shin, and S.-J. Ham, "Ion migration failure mechanism for organic PCB under biased HAST," Journal of the Microelectronics and Packaging Society, vol. 22, no. 1, pp. 43-49, 2015.
[2] I. A. Blech, "Critical length in electromigration-experiments and theory," in AIP Conference Proceedings, 1998, vol. 418, no. 1: American Institute of Physics, pp. 3-13.
[3] H. H. Chang, Y. F. Su, S. Y. Liang, and K. N. Chiang, "The Effect of Mechanical Stress on Electromigration Behavior,", Journal of Mechanics, vol. 31, no. 4, pp. 441-448, Aug 2015, doi: 10.1017/jmech.2015.10.
[4] K. N. Chiang, C. C. Lee, C. C. Lee, and K. M. Chen, "Current crowding-induced electromigration in SnAg3.0Cu0.5 microbumps,", Applied Physics Letters, vol. 88, no. 7, Feb 13 2006

[5] J.-H. Lee et al., "Size effect on electromigration reliability of pb-free flip chip solder bump," in 2008 58th Electronic Components and Technology Conference, 2008, May: IEEE, pp. 2030-2034).
[6] Y.-H. Liao, C.-H. Chen, C.-L. Liang, K.-L. Lin, and A. T. Wu, "A comprehensive study of electromigration in pure Sn: Effects on crystallinity, microstructure, and electrical property," Acta Materialia, vol. 200, pp. 200-210, 2020.
[7] P. Zhang, S. Xue, and J. Wang, "New challenges of miniaturization of electronic devices: Electromigration and thermomigration in lead-free solder joints," Materials & Design, vol. 192, 2020.
[8] C. C. Lee, H. H. Chang, C. C. Chiu, and K. N. Chiang, "Investigation of Stress Effect of Electromigration Behavior of Aluminum Strip," (in English), Ieee Transactions on Components Packaging and Manufacturing Technology, vol. 1, no. 10, pp. 1558-1563, Oct 2011
[9] E. Madenci and I. Guven, The finite element method and applications in engineering using ANSYS®. Springer, 2015.
[10] Z. Bin and Q. Baojun, "Effect of voids on the thermal fatigue reliability of PBGA solder joints through submodel technology," in 2008 10th Electronics Packaging Technology Conference, 2008: IEEE, pp. 704-708.
[11] F. Che et al., "Development and assessment of global-local modeling technique used in advanced microelectronic packaging," in 2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007, 2007: IEEE, pp. 1-7.
[12] A. Syed, "Updated life prediction models for solder joints with removal of modeling assumptions and effect of constitutive equations," in EuroSime 2006-7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 2006: IEEE, pp. 1-9.
[13] M. C. Yew, M. Tsai, D. C. Hu, W. K. Yang, and K. N. Chiang, "Reliability analysis of a novel fan-out type WLP," (in English), Soldering & Surface Mount Technology, vol. 21, no. 3, pp. 30-38, 2009, doi: 10.1108/09540910910970394.
[14] M. C. Yew et al., "Trace line failure analysis and characterization of the panel base package (PBP (TM)) technology with fan-out capability," 2008 11th Ieee Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Vols 1-3, pp. 862, 2008,
[15] W. Voigt, "Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper," Annalen der physik, vol. 274, no. 12, pp. 573-587, 1889.
[16] A. Reuß, "Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle," ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol. 9, no. 1, pp. 49-58, 1929.
[17] H. Cox, "The elasticity and strength of paper and other fibrous materials," British journal of applied physics, vol. 3, no. 3, p. 72, 1952.
[18] S. W. Tsai, J. C. Halpin, N. J. Pagano, and R. T. Schwartz, "Composite materials workshop,", Technomic Pub. Co, Stamford, CT, 1968.
[19] S. W. Tsai and H.T. Hahn, "Introduction to composite materials, Lancaster, Pennsylvania: Technomic, 1980.
[20] T. Lewis and L. Nielsen, "Dynamic mechanical properties of particulate‐filled composites," Journal of applied polymer science, vol. 14, no. 6, pp. 1449-1471, 1970.
[21] L. E. Nielsen, "Generalized equation for the elastic moduli of composite materials," Journal of Applied Physics, vol. 41, no. 11, pp. 4626-4627, 1970.
[22] L. E. Nielsen, "Thermal conductivity of particulate‐filled polymers," Journal of applied polymer science, vol. 17, no. 12, pp. 3819-3820, 1973.
[23] L. E. Nielsen, "The thermal and electrical conductivity of two-phase systems," Industrial & Engineering chemistry fundamentals, vol. 13, no. 1, pp. 17-20, 1974.
[24] D. A. Hopkins and C. C. Chamis, "A unique set of micromechanics equations for high temperature metal matrix composites," Testing technology of metal matrix composites, ASTM STP, vol. 964, pp. 159-176, 1988.
[25] R. A. Schapery, "Thermal expansion coefficients of composite materials based on energy principles," Journal of Composite materials, vol. 2, no. 3, pp. 380-404, 1968.
[26] J. D. Eshelby, "The determination of the elastic field of an ellipsoidal inclusion, and related problems," Proceedings of the royal society of London. Series A. Mathematical and physical sciences, vol. 241, no. 1226, pp. 376-396, 1957.
[27] J. D. Eshelby, "The elastic field outside an ellipsoidal inclusion," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 252, no. 1271, pp. 561-569, 1959.
[28] P. P. Castañeda and J. R. Willis, "The effect of spatial distribution on the effective behavior of composite materials and cracked media," Journal of the Mechanics and Physics of Solids, vol. 43, no. 12, pp. 1919-1951, 1995.
[29] H.-C. Cheng, L.-C. Tai, and Y.-C. Liu, "Theoretical and experimental investigation of warpage evolution of flip chip package on packaging during fabrication," Materials, vol. 14, no. 17, p. 4816, 2021.
[30] C.-C. Lee, C.-W. Wang, and C.-Y. Chen, "Comparison of mechanical modeling to warpage estimation of RDL-first fan-out panel-level packaging," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 7, pp. 1100-1108, 2022.
[31] G. Ye, X. Fan, and G. Zhang, "Practical aspects of thermomechanical modeling in electronics packaging: A case study with a SiC power package," Microelectronics Reliability, vol. 132, p. 114514, 2022.
[32] W. Chen and C. Nelson, "Thermal stress in bonded joints," IBM Journal of Research and Development, vol. 23, no. 2, pp. 179-188, 1979.
[33] R. Darveaux, I. Turlik, L.-T. Hwang, and A. Reisman, "Thermal stress analysis of a multichip package design," IEEE transactions on components, hybrids, and manufacturing technology, vol. 12, no. 4, pp. 663-672, 1989.
[34] R. Darveaux, K. L. Murty, and I. Turlik, "Predictive thermal and mechanical modeling of a developmental MCM," The Journal of The Minerals, Metals & Materials Society, vol. 44, no. 7, pp. 36-41, 1992.
[35] N. Chidambaram and M. Papageorge, "Stress and coplanarity analysis of 225 BGA package," in Proceedings of 16th IEEE/CPMT International Electronic Manufacturing Technology Symposium, 1994: IEEE, pp. 355-358.
[36] C.P. Yeh, W. X. Zhou, and K. Wyatt, "Parametric finite element analysis of flip chip reliability," International Journal of Microcircuits and Electronic Packaging, vol. 19, no. 2, pp. 120-127, 1996.
[37] L. L. Mercado and V. Sarihan, "Predictive design of flip-chip PBGA for high reliability and low cost," in 1999 Proceedings. 49th Electronic Components and Technology Conference (Cat. No. 99CH36299), 1999: IEEE, pp. 1111-1115.
[38] K. N. Chiang, Z. N. Liu, and C. T. Peng, "Parametric reliability analysis of no-underfill flip chip package," (in English), Ieee Transactions on Components and Packaging Technologies, vol. 24, no. 4, pp. 635-640, Dec 2001
[39] J. Okura, S. Shetty, B. Ramakrishnan, A. Dasgupta, J. Caers, and T. Reinikainen, "Guidelines to select underfills for flip chip on board assemblies and compliant interposers for chip scale package assemblies," Microelectronics Reliability, vol. 40, no. 7, pp. 1173-1180, 2000.
[40] T. H. Ho, J. Y. Lee, R. S. Lee, and A. W. Lin, "Linear finite element stress simulation of solder joints on 225 I/O plastic BGA package under thermal cycling," in 1995 Proceedings. 45th Electronic Components and Technology Conference, 1995: IEEE, pp. 930-936.
[41] D. Liang, "Warpage study of glob top cavity-up EPBGA packages," in 1996 Proceedings 46th Electronic Components and Technology Conference, 1996: IEEE, pp. 694-701.
[42] J. H. Lau and K.-L. Chen, "Thermal and mechanical evaluations of a cost-effective plastic ball grid array package," 1997.
[43] X. Yan and G. Li, "Study of thermal fatigue lifetime of fan-in package on package (FiPoP) by finite element analysis," in 2009 International Conference on Electronic Packaging Technology & High Density Packaging, 2009: IEEE, pp. 1176-1180.
[44] B. Rodgers, J. Punch, and J. Jarvis, "Finite element modelling of a BGA package subjected to thermal and power cycling," in ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 02CH37258), 2002: IEEE, pp. 993-1000.
[45] S. Wen and G.-Q. Lu, "Finite-element modeling of thermal and thermomechanical behavior for three-dimensional packaging of power electronics modules," in ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 00CH37069), 2000, vol. 2: IEEE, pp. 303-309.
[46] "Defense Advanced Research Projects Agency" https://www.darpa.mil/ (accessed 2023).
[47] "Disaggregated Silicon." https://www.netronome.com/blog/its-time-disaggregated-silicon/ (accessed 2023).
[48] J. Yin et al., "Modular routing design for chiplet-based systems," in 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), 2018: IEEE, pp. 726-738.
[49] J. H. Lau, "Recent advances and trends in advanced packaging," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 12, no. 2, pp. 228-252, 2022.
[50] "Xilinx and TSMC Reach Volume Production on all 28nm CoWoS™-based All Programmable 3D IC Families." https://pr.tsmc.com/english/news/1792 (accessed 2023).
[51] W. Gomes et al., "8.1 Lakefield and Mobility Compute: A 3D Stacked 10nm and 22FFL Hybrid Processor System in 12× 12mm 2, 1mm Package-on-Package," in 2020 IEEE International Solid-State Circuits Conference-(ISSCC), 2020: IEEE, pp. 144-146.
[52] D. Ingerly et al., "Foveros: 3D integration and the use of face-to-face chip stacking for logic devices," in 2019 IEEE International Electron Devices Meeting (IEDM), 2019: IEEE, pp. 19.6. 1-19.6. 4.
[53] W. N. Findley, J. S. Lai, K. Onaran, and R. Christensen, "Creep and relaxation of nonlinear viscoelastic materials with an introduction to linear viscoelasticity," 1977.
[54] G. E. Dieter and D. J. Bacon, Mechanical metallurgy. McGraw-hill New York, 1976.
[55] J. Chakrabarty, "Foundations of Plasticity," Theory of plasticity, 3rd ed. Texas: Butterworth-Heinemann, 2006.
[56] M. A. Meyers and K. K. Chawla, Mechanical behavior of materials. Cambridge university press, 2008.
[57] J.-L. Chaboche, "On some modifications of kinematic hardening to improve the description of ratchetting effects," International journal of plasticity, vol. 7, no. 7, pp. 661-678, 1991.
[58] W.-F. Chen and D.-J. Han, Plasticity for structural engineers. J. Ross Publishing, 2007.
[59] L. S. Goldmann, "Geometric optimization of controlled collapse interconnections," IBM Journal of Research and Development, vol. 13, no. 3, pp. 251-265, 1969.
[60] S. M. Heinrich, M. Schaefer, S.A.Schroeder, and P.S.Lee, "Prediction of solder joint geometries in array-type interconnects," ASME. J. Electron. Packag. September 1996; 118(3): 114–121.
[61] K. A. Brakke, "Surface evolver manual," Mathematics Department, Susquehanna Univerisity, Selinsgrove, PA, vol. 17870, no. 2.24, p. 20, 1994.
[62] H.-C. Cheng, R.-S. Li, S.-C. Lin, W.-H. Chen, and K.-N. Chiang, "Macroscopic mechanical constitutive characterization of through-silicon-via-based 3-D integration," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 6, no. 3, pp. 432-446, 2016.
[63] M. Motalab et al., "Thermal cycling reliability predictions for PBGA assemblies that include aging effects," in International Electronic Packaging Technical Conference and Exhibition, 2013, vol. 55751: American Society of Mechanical Engineers
[64] X. Yanjun, W. Liquan, W. Fengshun, X. Weisheng, and L. Hui, "Effect of interface structure on fatigue life under thermal cycle with SAC305 solder joints," in 2013 14th International Conference on Electronic Packaging Technology, 2013: IEEE, pp. 959-964.
[65] 王光謙, "黏晶機頂針對薄形晶片應力特性之分析," 國立成功大學碩士論文,2014.
[66] K.N. Chiang and C.A. Yuan, "An overview of solder bump shape prediction algorithms with validations," IEEE transactions on advanced packaging, vol. 24, no. 2, pp. 158-162, 2001.
[67] H. C. Cheng, K. N. Chiang, and M. H. Lee, "An effective approach for three-dimensional finite element analysis of ball grid array typed packages,", Journal of Electronic Packaging, vol. 120, no. 2, pp. 129-134, Jun 1998
[68] J. Halpin, "Stiffness and expansion estimates for oriented short fiber composites," Journal of composite materials, vol. 3, no. 4, pp. 732-734, 1969.
[69] Z. Luo, X. Li, J. Shang, H. Zhu, and D. Fang, "Modified rule of mixtures and Halpin–Tsai model for prediction of tensile strength of micron-sized reinforced composites and Young’s modulus of multiscale reinforced composites for direct extrusion fabrication," Advances in Mechanical Engineering, vol. 10, no. 7,2018.
[70] M. W. Hyer and S. R. White, Stress analysis of fiber-reinforced composite materials. DEStech Publications, Inc, 2009.
[71] 黃昱瑋, "以模擬設計法進行異質整合小晶片封裝設計與可靠度研究," 國立清華大學博士論文,2023.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *